INDEPENDENT COMPONENT ANALYSIS FOR CLASSIFYING MULTISPECTRAL IMAGES WITH DIMENSIONALITY LIMITATION

2004 ◽  
Vol 01 (03) ◽  
pp. 201-216 ◽  
Author(s):  
QIAN DU ◽  
IVICA KOPRIVA ◽  
HAROLD SZU

Airborne and spaceborne remote sensors can acquire invaluable information about earth surface, which have many important applications. The acquired information usually is represented as two-dimensional grids, i.e. images. One of techniques to processing such images is Independent Component Analysis (ICA), which is particularly useful for classifying objects with unknown spectral signatures in an unknown image scene, i.e. unsupervised classification. Since the weight matrix in ICA is a square matrix for the purpose of mathematical tractability, the number of objects that can be classified is equal to the data dimensionality, i.e. the number of spectral bands. When the number of sensors (or spectral channels) is very small (e.g. a 3-band CIR photograph and 6-band Landsat image with the thermal band being removed), it is impossible to classify all the different objects present in an image scene using the original data. In order to solve this problem, we present a data dimensionality expansion technique to generate artificial bands. Its basic idea is to use nonlinear functions to capture and highlight the similarity/dissimilarity between original spectral measurements, which can provide more data with additional information for detecting and classifying more objects. The results from such a nonlinear band generation approach are compared with a linear band generation method using cubic spline interpolation of pixel spectral signatures. The experiments demonstrate that nonlinear band generation approach can significantly improve unsupervised classification accuracy, while linear band generation method cannot since no new information can be provided. It is also demonstrated that ICA is more powerful than other frequently used unsupervised classification algorithms such as ISODATA.

Author(s):  
MITHUN PRASAD ◽  
ARCOT SOWMYA ◽  
INGE KOCH

Isolating relevant information and reducing the dimensionality of the original data set are key areas of interest in pattern recognition and machine learning. In this paper, a novel approach to reducing dimensionality of the feature space by employing independent component analysis (ICA) is introduced. While ICA is primarily a feature extraction technique, it is used here as a feature selection/construction technique in a generic way. The new technique, called feature selection based on independent component analysis (FS_ICA), efficiently builds a reduced set of features without loss in accuracy and also has a fast incremental version. When used as a first step in supervised learning, FS_ICA outperforms comparable methods in efficiency without loss of classification accuracy. For large data sets as in medical image segmentation of high-resolution computer tomography images, FS_ICA reduces dimensionality of the data set substantially and results in efficient and accurate classification.


Author(s):  
Beatriz Galindo-Prieto ◽  
Frank Westad

Independent component analysis combined with various strategies for cross-validation, uncertainty estimates by jack-knifing and critical Hotelling’s T2 limits estimation, proposed in this paper, is used for classification purposes in hyperspectral images. To the best of our knowledge, the combined approach of methods used in this paper has not been previously applied to hyperspectral imaging analysis for interpretation and classification in the literature. The data analysis performed here aims to distinguish between four different types of plastics, some of them containing brominated flame retardants, from their near infrared hyperspectral images. The results showed that the method approach used here can be successfully used for unsupervised classification. A comparison of validation approaches, especially leave-one-out cross-validation and regions of interest scheme validation is also evaluated.


2020 ◽  
Vol 2020 (14) ◽  
pp. 357-1-357-6
Author(s):  
Luisa F. Polanía ◽  
Raja Bala ◽  
Ankur Purwar ◽  
Paul Matts ◽  
Martin Maltz

Human skin is made up of two primary chromophores: melanin, the pigment in the epidermis giving skin its color; and hemoglobin, the pigment in the red blood cells of the vascular network within the dermis. The relative concentrations of these chromophores provide a vital indicator for skin health and appearance. We present a technique to automatically estimate chromophore maps from RGB images of human faces captured with mobile devices such as smartphones. The ultimate goal is to provide a diagnostic aid for individuals to monitor and improve the quality of their facial skin. A previous method approaches the problem as one of blind source separation, and applies Independent Component Analysis (ICA) in camera RGB space to estimate the chromophores. We extend this technique in two important ways. First we observe that models for light transport in skin call for source separation to be performed in log spectral reflectance coordinates rather than in RGB. Thus we transform camera RGB to a spectral reflectance space prior to applying ICA. This process involves the use of a linear camera model and Principal Component Analysis to represent skin spectral reflectance as a lowdimensional manifold. The camera model requires knowledge of the incident illuminant, which we obtain via a novel technique that uses the human lip as a calibration object. Second, we address an inherent limitation with ICA that the ordering of the separated signals is random and ambiguous. We incorporate a domain-specific prior model for human chromophore spectra as a constraint in solving ICA. Results on a dataset of mobile camera images show high quality and unambiguous recovery of chromophores.


Sign in / Sign up

Export Citation Format

Share Document