Conformal Ricci soliton and geometrical structure in a perfect fluid spacetime

2020 ◽  
Vol 17 (06) ◽  
pp. 2050083
Author(s):  
Mohd. Danish siddiqi ◽  
Shah Alam Siddiqui

In this paper, we studied the geometrical aspects of a perfect fluid spacetime in terms of conformal Ricci soliton and conformal [Formula: see text]-Ricci soliton with torse-forming vector field [Formula: see text]. Condition for the conformal Ricci soliton to be steady, expanding or shrinking are also given. In particular case, when the potential vector filed [Formula: see text] of the soliton is of gradient type, we derive, from the conformal [Formula: see text]-Ricci soliton equation, a Laplacian equation.

Author(s):  
Sudhakar K. Chaubey ◽  
Young Jin Suh

The main goal of this paper is to study the properties of generalized Ricci recurrent perfect fluid spacetimes and the generalized Ricci recurrent (generalized Robertson–Walker (GRW)) spacetimes. It is proven that if the generalized Ricci recurrent perfect fluid spacetimes satisfy the Einstein’s field equations without cosmological constant, then the isotropic pressure and the energy density of the perfect fluid spacetime are invariant along the velocity vector field of the perfect fluid spacetime. In this series, we show that a generalized Ricci recurrent perfect fluid spacetime satisfying the Einstein’s field equations without cosmological constant is either Ricci recurrent or Ricci symmetric. An [Formula: see text]-dimensional compact generalized Ricci recurrent GRW spacetime with almost Ricci soliton is geodesically complete, provided the soliton vector field of almost Ricci soliton is timelike. Also, we prove that a (GR)n GRW spacetime is Einstein. The properties of (GR)n GRW spacetimes equipped with almost Ricci soliton are studied.


Filomat ◽  
2017 ◽  
Vol 31 (18) ◽  
pp. 5791-5801 ◽  
Author(s):  
Adara Blaga

If the potential vector field of an ?-Ricci soliton is of gradient type, using Bochner formula, we derive from the soliton equation a nonlinear second order PDE. In a particular case of irrotational potential vector field we prove that the soliton is completely determined by f . We give a way to construct a gradient ?-Ricci soliton on a warped product manifold and show that if the base manifold is oriented, compact and of constant scalar curvature, the soliton on the product manifold gives a lower bound for its scalar curvature.


2015 ◽  
Vol 12 (10) ◽  
pp. 1550111 ◽  
Author(s):  
Mircea Crasmareanu ◽  
Camelia Frigioiu

Fix ξ a unitary vector field on a Riemannian manifold M and γ a non-geodesic Frenet curve on M satisfying the Rytov law of polarization optics. We prove in these conditions that γ is a Legendre curve for ξ if and only if the γ-Fermi–Walker covariant derivative of ξ vanishes. The cases when γ is circle or helix as well as ξ is (conformal) Killing vector filed or potential vector field of a Ricci soliton are analyzed and an example involving a three-dimensional warped metric is provided. We discuss also K-(para)contact, particularly (para)Sasakian, manifolds and hypersurfaces in complex space forms.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Amalendu Ghosh

Abstract We prove that on a K-contact manifold, a Ricci almost soliton is a Ricci soliton if and only if the potential vector field V is a Jacobi field along the Reeb vector field ξ. Then we study contact metric as a Ricci almost soliton with parallel Ricci tensor. To this end, we consider Ricci almost solitons whose potential vector field is a contact vector field and prove some rigidity results.


2019 ◽  
Vol 17 (1) ◽  
pp. 874-882 ◽  
Author(s):  
Xinxin Dai ◽  
Yan Zhao ◽  
Uday Chand De

Abstract Let (M, g) be a non-Kenmotsu (κ, μ)′-almost Kenmotsu manifold of dimension 2n + 1. In this paper, we prove that if the metric g of M is a *-Ricci soliton, then either M is locally isometric to the product ℍn+1(−4)×ℝn or the potential vector field is strict infinitesimal contact transformation. Moreover, two concrete examples of (κ, μ)′-almost Kenmotsu 3-manifolds admitting a Killing vector field and strict infinitesimal contact transformation are given.


2018 ◽  
Vol 62 (4) ◽  
pp. 912-922 ◽  
Author(s):  
Yaning Wang

AbstractIn this paper, we prove that if an almost co-Kähler manifold of dimension greater than three satisfying $\unicode[STIX]{x1D702}$-Einstein condition with constant coefficients is a Ricci soliton with potential vector field being of constant length, then either the manifold is Einstein or the Reeb vector field is parallel. Let $M$ be a non-co-Kähler almost co-Kähler 3-manifold such that the Reeb vector field $\unicode[STIX]{x1D709}$ is an eigenvector field of the Ricci operator. If $M$ is a Ricci soliton with transversal potential vector field, then it is locally isometric to Lie group $E(1,1)$ of rigid motions of the Minkowski 2-space.


Author(s):  
Absos Ali Shaikh ◽  
Biswa Ranjan Datta ◽  
Akram Ali ◽  
Ali H. Alkhaldi

This paper is concerned with the study of [Formula: see text]-manifolds and Ricci solitons. It is shown that in a [Formula: see text]-spacetime, the fluid has vanishing vorticity and vanishing shear. It is found that in an [Formula: see text]-manifold, [Formula: see text] is an irrotational vector field, where [Formula: see text] is a non-zero smooth scalar function. It is proved that in a [Formula: see text]-spacetime with generator vector field [Formula: see text] obeying Einstein equation, [Formula: see text] or [Formula: see text] according to [Formula: see text] or [Formula: see text], where [Formula: see text] is a scalar function and [Formula: see text] is the energy momentum tensor. Also, it is shown that if [Formula: see text] is a non-null spacelike (respectively, timelike) vector field on a [Formula: see text]-spacetime with scalar curvature [Formula: see text] and cosmological constant [Formula: see text], then [Formula: see text] if and only if [Formula: see text] (respectively, [Formula: see text]), and [Formula: see text] if and only if [Formula: see text] (respectively, [Formula: see text]), and further [Formula: see text] if and only if [Formula: see text]. The nature of the scalar curvature of an [Formula: see text]-manifold admitting Yamabe soliton is obtained. Also, it is proved that an [Formula: see text]-manifold admitting [Formula: see text]-Ricci soliton is [Formula: see text]-Einstein and its scalar curvature is constant if and only if [Formula: see text] is constant. Further, it is shown that if [Formula: see text] is a scalar function with [Formula: see text] and [Formula: see text] vanishes, then the gradients of [Formula: see text], [Formula: see text], [Formula: see text] are co-directional with the generator [Formula: see text]. In a perfect fluid [Formula: see text]-spacetime admitting [Formula: see text]-Ricci soliton, it is proved that the pressure density [Formula: see text] and energy density [Formula: see text] are constants, and if it agrees Einstein field equation, then we obtain a necessary and sufficient condition for the scalar curvature to be constant. If such a spacetime possesses Ricci collineation, then it must admit an almost [Formula: see text]-Yamabe soliton and the converse holds when the Ricci operator is of constant norm. Also, in a perfect fluid [Formula: see text]-spacetime satisfying Einstein equation, it is shown that if Ricci collineation is admitted with respect to the generator [Formula: see text], then the matter content cannot be perfect fluid, and further [Formula: see text] with gravitational constant [Formula: see text] implies that [Formula: see text] is a Killing vector field. Finally, in an [Formula: see text]-manifold, it is proved that if the [Formula: see text]-curvature tensor is conservative, then scalar potential and the generator vector field are co-directional, and if the manifold possesses pseudosymmetry due to the [Formula: see text]-curvature tensor, then it is an [Formula: see text]-Einstein manifold.


2017 ◽  
Vol 15 (1) ◽  
pp. 1236-1243 ◽  
Author(s):  
Yaning Wang

Abstract Let (M3, g) be an almost Kenmotsu 3-manifold such that the Reeb vector field is an eigenvector field of the Ricci operator. In this paper, we prove that if g represents a Ricci soliton whose potential vector field is orthogonal to the Reeb vector field, then M3 is locally isometric to either the hyperbolic space ℍ3(−1) or a non-unimodular Lie group equipped with a left invariant non-Kenmotsu almost Kenmotsu structure. In particular, when g represents a gradient Ricci soliton whose potential vector field is orthogonal to the Reeb vector field, then M3 is locally isometric to either ℍ3(−1) or ℍ2(−4) × ℝ.


Sign in / Sign up

Export Citation Format

Share Document