scholarly journals Semi-invariant Riemannian submersions from nearly Kaehler manifolds

2020 ◽  
Vol 17 (07) ◽  
pp. 2050100
Author(s):  
Rupali Kaushal ◽  
Rashmi Sachdeva ◽  
Rakesh Kumar ◽  
Rakesh Kumar Nagaich

We study semi-invariant Riemannian submersions from a nearly Kaehler manifold to a Riemannian manifold. It is well known that the vertical distribution of a Riemannian submersion is always integrable therefore, we derive condition for the integrability of horizontal distribution of a semi-invariant Riemannian submersion and also investigate the geometry of the foliations. We discuss the existence and nonexistence of semi-invariant submersions such that the total manifold is a usual product manifold or a twisted product manifold. We establish necessary and sufficient conditions for a semi-invariant submersion to be a totally geodesic map. Finally, we study semi-invariant submersions with totally umbilical fibers.


Filomat ◽  
2013 ◽  
Vol 27 (7) ◽  
pp. 1219-1235 ◽  
Author(s):  
Shahid Ali ◽  
Tanveer Fatima

We extend the notion of anti-invariant and Langrangian Riemannian submersion to the case when the total manifold is nearly Kaehler. We obtain the integrability conditions for the horizontal distribution while it is noted that the vertical distribution is always integrable. We also investigate the geometry of the foliations of the two distributions and obtain the necessary and sufficient condition for a Langrangian submersion to be totally geodesic. The decomposition theorems for the total manifold of the submersion are obtained.



2013 ◽  
Vol 44 (4) ◽  
pp. 395-409 ◽  
Author(s):  
Tanveer Fatima ◽  
Shahid Ali

B. Sahin [12] introduced the notion of semi-invariant Riemannian submersions as a generalization of anti-invariant Riemmanian submersions [11]. As a generalization to semi-invariant Riemannian submersions we introduce the notion of generic submersion from an almost Hermitian manifold onto a Riemannian manifold and investigate the geometry of foliations which arise from the definition of a generic Riemannian submersion and find necessary and sufficient condition for total manifold to be a generic product manifold. We also find necessary and sufficient conditions for a generic submersion to be totally geodesic.



2019 ◽  
Vol 16 (03) ◽  
pp. 1950037
Author(s):  
Megha ◽  
Sangeet Kumar

The purpose of this paper is to study normal [Formula: see text]-lightlike submanifolds of indefinite nearly Kaehler manifolds. We find some necessary and sufficient conditions for an isometrically immersed [Formula: see text]-lightlike submanifold of an indefinite nearly Kaehler manifold to be a normal [Formula: see text]-lightlike submanifold. Further, we derive a characterization theorem for holomorphic bisectional curvature of a normal [Formula: see text]-lightlike submanifold of an indefinite nearly Kaehler manifold.



2017 ◽  
Vol 14 (12) ◽  
pp. 1750171 ◽  
Author(s):  
Şemsi Eken Meri̇ç ◽  
Erol Kiliç ◽  
Yasemi̇n Sağiroğlu

In this paper, we consider a Lagrangian Riemannian submersion from a Hermitian manifold to a Riemannian manifold and establish some basic inequalities to obtain relationships between the intrinsic and extrinsic invariants for such a submersion. Indeed, using these inequalities, we provide necessary and sufficient conditions for which a Lagrangian Riemannian submersion [Formula: see text] has totally geodesic or totally umbilical fibers. Moreover, we study the harmonicity of Lagrangian Riemannian submersions and obtain a characterization for such submersions to be harmonic.



2013 ◽  
Vol 56 (1) ◽  
pp. 173-183 ◽  
Author(s):  
Bayram Ṣahin

AbstractWe introduce semi-invariant Riemannian submersions from almost Hermitian manifolds onto Riemannian manifolds. We give examples, investigate the geometry of foliations that arise from the definition of a Riemannian submersion, and find necessary sufficient conditions for total manifold to be a locally product Riemannian manifold. We also find necessary and sufficient conditions for a semi-invariant submersion to be totally geodesic. Moreover, we obtain a classification for semiinvariant submersions with totally umbilical fibers and show that such submersions put some restrictions on total manifolds.



Filomat ◽  
2018 ◽  
Vol 32 (10) ◽  
pp. 3465-3478
Author(s):  
Morteza Faghfouri ◽  
Sahar Mashmouli

In this paper, we study a semi-Riemannian submersion from Lorentzian almost (para) contact manifolds and find necessary and sufficient conditions for the characteristic vector field to be vertical or horizontal. We also obtain decomposition theorems for anti-invariant semi-Riemannian submersions from Lorentzian para-Sasakian manifolds onto Lorentzian manifolds.



Author(s):  
Koji Matsumoto

In 1994, in [13], N. Papaghiuc introduced the notion of semi-slant submanifold in a Hermitian manifold which is a generalization of CR- and slant-submanifolds. In particular, he considered this submanifold in Kaehlerian manifolds, [13]. Then, in 2007, V. A. Khan and M. A. Khan considered this submanifold in a nearly Kaehler manifold and obtained interesting results, [11]. Recently, we considered semi-slant submanifolds in a locally conformal Kaehler manifold and gave a necessary and sufficient conditions for two distributions (holomorphic and slant) to be integrable. Moreover, we considered these submanifolds in a locally conformal Kaehler space form, [4]. In this paper, we define 2-kind warped product semi-slant submanifolds in a locally conformal Kaehler manifold and consider some properties of these submanifolds.



Filomat ◽  
2015 ◽  
Vol 29 (7) ◽  
pp. 1429-1444 ◽  
Author(s):  
Cengizhan Murathan ◽  
Erken Küpeli

We introduce anti-invariant Riemannian submersions from cosymplectic manifolds onto Riemannian manifolds. We survey main results of anti-invariant Riemannian submersions defined on cosymplectic manifolds. We investigate necessary and sufficient condition for an anti-invariant Riemannian submersion to be totally geodesic and harmonic. We give examples of anti-invariant submersions such that characteristic vector field ? is vertical or horizontal. Moreover we give decomposition theorems by using the existence of anti-invariant Riemannian submersions.



Filomat ◽  
2019 ◽  
Vol 33 (7) ◽  
pp. 2009-2016 ◽  
Author(s):  
Adara Blaga

We consider almost quasi-Yamabe solitons in Riemannian manifolds, derive a Bochner-type formula in the gradient case and prove that under certain assumptions, the manifold is of constant scalar curvature. We also provide necessary and sufficient conditions for a gradient almost quasi-Yamabe soliton on the base manifold to induce a gradient almost quasi-Yamabe soliton on the warped product manifold.



Filomat ◽  
2020 ◽  
Vol 34 (11) ◽  
pp. 3747-3758
Author(s):  
Ramazan Sari ◽  
Mehmet Akyol

M. A. Akyol and R. Sar? [On semi-slant ??-Riemannian submersions, Mediterr. J. Math. 14(6) (2017) 234.] defined semi-slant ??-Riemannian submersions from Sasakian manifolds onto Riemannian manifolds. As a generalization of the above notion and natural generalization of anti-invariant ??-Riemannian submersions, semi-invariant ??-Riemannian submersions and slant submersions, we study hemi-slant ??-Riemannian submersions from Sasakian manifolds onto Riemannian manifolds. We obtain the geometry of foliations, give some examples and find necessary and sufficient condition for the base manifold to be a locally product manifold. Moreover, we obtain some curvature relations from Sasakian space forms between the total space, the base space and the fibres.



Sign in / Sign up

Export Citation Format

Share Document