scholarly journals A note on warped product almost quasi-Yamabe solitons

Filomat ◽  
2019 ◽  
Vol 33 (7) ◽  
pp. 2009-2016 ◽  
Author(s):  
Adara Blaga

We consider almost quasi-Yamabe solitons in Riemannian manifolds, derive a Bochner-type formula in the gradient case and prove that under certain assumptions, the manifold is of constant scalar curvature. We also provide necessary and sufficient conditions for a gradient almost quasi-Yamabe soliton on the base manifold to induce a gradient almost quasi-Yamabe soliton on the warped product manifold.

Filomat ◽  
2020 ◽  
Vol 34 (11) ◽  
pp. 3747-3758
Author(s):  
Ramazan Sari ◽  
Mehmet Akyol

M. A. Akyol and R. Sar? [On semi-slant ??-Riemannian submersions, Mediterr. J. Math. 14(6) (2017) 234.] defined semi-slant ??-Riemannian submersions from Sasakian manifolds onto Riemannian manifolds. As a generalization of the above notion and natural generalization of anti-invariant ??-Riemannian submersions, semi-invariant ??-Riemannian submersions and slant submersions, we study hemi-slant ??-Riemannian submersions from Sasakian manifolds onto Riemannian manifolds. We obtain the geometry of foliations, give some examples and find necessary and sufficient condition for the base manifold to be a locally product manifold. Moreover, we obtain some curvature relations from Sasakian space forms between the total space, the base space and the fibres.


2020 ◽  
Vol 57 ◽  
pp. 7-24
Author(s):  
Punam Gupta ◽  
Abdoul Salam Diallo

In this paper, we study the doubly warped product manifolds with semi-symmetric metric connection. We derive the curvature formulas for doubly warped product manifold with semi-symmetric metric connection in terms of curvatures of components of doubly warped product manifolds. We also prove the necessary and sufficient condition for a doubly warped product manifold to be a warped product manifold. We obtain some results for an Einstein doubly warped product manifold and Einstein-like doubly warped product manifold of class A with respect to a semi-symmetric metric connection.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Uday Chand De ◽  
Abdallah Abdelhameed Syied ◽  
Nasser Bin Turki ◽  
Suliman Alsaeed

The main aim of this study is to investigate the effects of the P − curvature flatness, P − divergence-free characteristic, and P − symmetry of a warped product manifold on its base and fiber (factor) manifolds. It is proved that the base and the fiber manifolds of the P − curvature flat warped manifold are Einstein manifold. Besides that, the forms of the P − curvature tensor on the base and the fiber manifolds are obtained. The warped product manifold with P − divergence-free characteristic is investigated, and amongst many results, it is proved that the factor manifolds are of constant scalar curvature. Finally, P − symmetric warped product manifold is considered.


Filomat ◽  
2017 ◽  
Vol 31 (18) ◽  
pp. 5791-5801 ◽  
Author(s):  
Adara Blaga

If the potential vector field of an ?-Ricci soliton is of gradient type, using Bochner formula, we derive from the soliton equation a nonlinear second order PDE. In a particular case of irrotational potential vector field we prove that the soliton is completely determined by f . We give a way to construct a gradient ?-Ricci soliton on a warped product manifold and show that if the base manifold is oriented, compact and of constant scalar curvature, the soliton on the product manifold gives a lower bound for its scalar curvature.


2017 ◽  
Vol 14 (11) ◽  
pp. 1750166 ◽  
Author(s):  
Carlo Alberto Mantica ◽  
Sameh Shenawy

In this paper, it is proved that the fiber manifold [Formula: see text] of a warped product manifold [Formula: see text] inherits the Einstein-like class type of [Formula: see text] whereas the base manifold does under some conditions. Some related results are considered.


2020 ◽  
Vol 17 (07) ◽  
pp. 2050100
Author(s):  
Rupali Kaushal ◽  
Rashmi Sachdeva ◽  
Rakesh Kumar ◽  
Rakesh Kumar Nagaich

We study semi-invariant Riemannian submersions from a nearly Kaehler manifold to a Riemannian manifold. It is well known that the vertical distribution of a Riemannian submersion is always integrable therefore, we derive condition for the integrability of horizontal distribution of a semi-invariant Riemannian submersion and also investigate the geometry of the foliations. We discuss the existence and nonexistence of semi-invariant submersions such that the total manifold is a usual product manifold or a twisted product manifold. We establish necessary and sufficient conditions for a semi-invariant submersion to be a totally geodesic map. Finally, we study semi-invariant submersions with totally umbilical fibers.


Author(s):  
Hironori Kumura

Let UB(p0; ρ1) × f MV be a cylindrically bounded domain in a warped product manifold := MB × fMV and let M be an isometrically immersed submanifold in . The purpose of this paper is to provide explicit radii of the geodesic balls of M which first exit from UB(p0; ρ1) × fMV for the case in which the mean curvature of M is sufficiently small and the lower bound of the Ricci curvature of M does not diverge to –∞ too rapidly at infinity.


2011 ◽  
Vol 08 (05) ◽  
pp. 953-967 ◽  
Author(s):  
M. M. REZAII ◽  
Y. ALIPOUR-FAKHRI

Let 𝔽1 = (M1,F1) and 𝔽2 = (M2,F2) be two Finsler manifolds and let M = M1 × M2 and S is a spray in M. Also 𝔽 = (M1 × f M2, F) is a warped product Finsler manifolds, such that the function f : M1 → ℝ+ is not constant. In this paper, we define a non-linear connection on warped product 𝔽, and finally, we have presented some necessary and sufficient conditions under which the spray manifold (M1 × M2, S) is projectively equivalent to the warped product Finsler manifolds (M1 × f M2, F).


2020 ◽  
Vol 70 (1) ◽  
pp. 151-160
Author(s):  
Amalendu Ghosh

AbstractIn this paper, we study Yamabe soliton and quasi Yamabe soliton on Kenmotsu manifold. First, we prove that if a Kenmotsu metric is a Yamabe soliton, then it has constant scalar curvature. Examples has been provided on a larger class of almost Kenmotsu manifolds, known as β-Kenmotsu manifold. Next, we study quasi Yamabe soliton on a complete Kenmotsu manifold M and proved that it has warped product structure with constant scalar curvature in a region Σ where ∣Df∣ ≠ 0.


Sign in / Sign up

Export Citation Format

Share Document