scholarly journals WEAK SOLUTIONS OF NAVIER–STOKES EQUATIONS CONSTRUCTED BY ARTIFICIAL COMPRESSIBILITY METHOD ARE SUITABLE

2011 ◽  
Vol 08 (01) ◽  
pp. 101-113 ◽  
Author(s):  
DONATELLA DONATELLI ◽  
STEFANO SPIRITO

We prove that weak solutions constructed by artificial compressibility method are suitable in the sense of Scheffer. Using Hilbertian setting and Fourier transform with respect to time, we obtain non-trivial estimates on the pressure and the time derivative which allow us to pass to the limit.

2017 ◽  
Vol 20 (01) ◽  
pp. 1650064 ◽  
Author(s):  
Luigi C. Berselli ◽  
Stefano Spirito

We prove that suitable weak solutions of 3D Navier–Stokes equations in bounded domains can be constructed by a particular type of artificial compressibility approximation.


2006 ◽  
Vol 03 (03) ◽  
pp. 575-588 ◽  
Author(s):  
DONATELLA DONATELLI ◽  
PIERANGELO MARCATI

In this paper we study how to approximate the Leray weak solutions of the incompressible Navier–Stokes equations. In particular we describe an hyperbolic version of the so-called artificial compressibility method investigated by J. L. Lions and Temam. By exploiting the wave equation structure of the pressure of the approximating system we achieve the convergence of the approximating sequences by means of dispersive estimates of Strichartz type. We prove that the projection of the approximating velocity fields on the divergence free vectors is relatively compact and converges to a Leray weak solution of the incompressible Navier–Stokes equation.


Author(s):  
Hyungro Lee ◽  
Einkeun Kwak ◽  
Seungsoo Lee

In this study, two commonly used numerical methods for the analysis of incompressible flows (or low Mach number flows), Chorins’ artificial compressibility method and Wiess and Smith’s preconditioning method are compared. Also, the convergence characteristics of two methods are numerically investigated for two-dimensional laminar and turbulent flows. Although the two methods have similar governing equations, the eigensystems and other details are very different. The eigensystems of the artificial compressibility method and the preconditioning method are analytically examined. An artificial compressibility code that solves the incompressible RANS (Reynolds Averaged Navier-Stokes) equations is newly developed for the study. An artificial compressibility code and a well-verified existing low Mach number code uses Roe’s approximate Riemann solver in conjunction with a cell centered finite volume method. Using MUSCL extrapolation with nonlinear limiters, 2nd order spatial accuracy is achieved while maintaining TVD (total variation diminishing) property. AF-ADI (approximate factorization-alternate direction implicit) method is used to get the steady solution for both codes. Menter’s k–ω SST turbulence model is used for the analysis of turbulent flows. Navier-Stokes equations and the turbulence model equations are solved in a loosely coupled manner.


Sign in / Sign up

Export Citation Format

Share Document