scholarly journals A DISPERSIVE APPROACH TO THE ARTIFICIAL COMPRESSIBILITY APPROXIMATIONS OF THE NAVIER–STOKES EQUATIONS IN 3D

2006 ◽  
Vol 03 (03) ◽  
pp. 575-588 ◽  
Author(s):  
DONATELLA DONATELLI ◽  
PIERANGELO MARCATI

In this paper we study how to approximate the Leray weak solutions of the incompressible Navier–Stokes equations. In particular we describe an hyperbolic version of the so-called artificial compressibility method investigated by J. L. Lions and Temam. By exploiting the wave equation structure of the pressure of the approximating system we achieve the convergence of the approximating sequences by means of dispersive estimates of Strichartz type. We prove that the projection of the approximating velocity fields on the divergence free vectors is relatively compact and converges to a Leray weak solution of the incompressible Navier–Stokes equation.

2017 ◽  
Vol 20 (01) ◽  
pp. 1650064 ◽  
Author(s):  
Luigi C. Berselli ◽  
Stefano Spirito

We prove that suitable weak solutions of 3D Navier–Stokes equations in bounded domains can be constructed by a particular type of artificial compressibility approximation.


Author(s):  
Joel D. Avrin

We obtain global existence and regularity of strong solutions to the incompressible Navier–Stokes equations for a variety of boundary conditions in such a way that the initial and forcing data can be large in the high-frequency eigenspaces of the Stokes operator. We do not require that the domain be thin as in previous analyses. But in the case of thin domains (and zero Dirichlet boundary conditions) our results represent a further improvement and refinement of previous results obtained.


2016 ◽  
Vol 20 (suppl. 3) ◽  
pp. 853-858
Author(s):  
Zhi-Jun Meng ◽  
Yao-Ming Zhou ◽  
Dong-Mu Mei

This paper addresses the systems of the incompressible Navier-Stokes equations on Cantor sets without the external force involving the fractal heat-conduction problem vial local fractional derivative. The spherical Cantor type co-ordinate method is used to transfer the incompressible Navier-Stokes equation from the Cantorian co-ordinate system into the spherical Cantor type co-ordinate system.


2010 ◽  
Vol 2010 ◽  
pp. 1-24 ◽  
Author(s):  
Hong Yin

The existence and uniqueness of adapted solutions to the backward stochastic Navier-Stokes equation with artificial compressibility in two-dimensional bounded domains are shown by Minty-Browder monotonicity argument, finite-dimensional projections, and truncations. Continuity of the solutions with respect to terminal conditions is given, and the convergence of the system to an incompressible flow is also established.


2011 ◽  
Vol 08 (01) ◽  
pp. 101-113 ◽  
Author(s):  
DONATELLA DONATELLI ◽  
STEFANO SPIRITO

We prove that weak solutions constructed by artificial compressibility method are suitable in the sense of Scheffer. Using Hilbertian setting and Fourier transform with respect to time, we obtain non-trivial estimates on the pressure and the time derivative which allow us to pass to the limit.


Author(s):  
Hyungro Lee ◽  
Einkeun Kwak ◽  
Seungsoo Lee

In this study, two commonly used numerical methods for the analysis of incompressible flows (or low Mach number flows), Chorins’ artificial compressibility method and Wiess and Smith’s preconditioning method are compared. Also, the convergence characteristics of two methods are numerically investigated for two-dimensional laminar and turbulent flows. Although the two methods have similar governing equations, the eigensystems and other details are very different. The eigensystems of the artificial compressibility method and the preconditioning method are analytically examined. An artificial compressibility code that solves the incompressible RANS (Reynolds Averaged Navier-Stokes) equations is newly developed for the study. An artificial compressibility code and a well-verified existing low Mach number code uses Roe’s approximate Riemann solver in conjunction with a cell centered finite volume method. Using MUSCL extrapolation with nonlinear limiters, 2nd order spatial accuracy is achieved while maintaining TVD (total variation diminishing) property. AF-ADI (approximate factorization-alternate direction implicit) method is used to get the steady solution for both codes. Menter’s k–ω SST turbulence model is used for the analysis of turbulent flows. Navier-Stokes equations and the turbulence model equations are solved in a loosely coupled manner.


2011 ◽  
Vol 11 (4) ◽  
Author(s):  
Pedro Marín-Rubio ◽  
José Real ◽  
Antonio M. Márquez-Durán

AbstractWe prove that under suitable assumptions, from a sequence of solutions of Globally Modified Navier-Stokes equations with delays we can extract a subsequence which converges in an adequate sense to a weak solution of a three-dimensional Navier-Stokes equation with delays. An additional case with a family of different delays involved in the approximating problems is also discussed.


Sign in / Sign up

Export Citation Format

Share Document