Irreducible Representations of the Generalized Jacobson-Witt Algebras

2012 ◽  
Vol 19 (01) ◽  
pp. 53-72 ◽  
Author(s):  
Bin Shu ◽  
Yufeng Yao

Let L be the generalized Jacobson-Witt algebra W(m;n) over an algebraically closed field F of characteristic p > 3, which consists of special derivations on the divided power algebra R= 𝔄(m;n). Then L is a so-called generalized restricted Lie algebra. In such a setting, we can reformulate the description of simple modules of L with the generalized p-character χ when ht (χ) < min {pni-pni-1| 1 ≤ i ≤ m} for n=(n1,…,nm), which was obtained by Skryabin. This is done by introducing a modified induced module structure and thereby endowing it with a so-called (R,L)-module structure in the generalized χ-reduced module category, which enables us to apply Skryabin's argument to our case. Simple exceptional-weight modules are precisely constructed via a complex of modified induced modules, and their dimensions are also obtained. The results for type W are extended to the ones for types S and H.

2011 ◽  
Vol 90 (3) ◽  
pp. 403-430 ◽  
Author(s):  
YU-FENG YAO ◽  
BIN SHU

AbstractLetL=H(2r;n) be a graded Lie algebra of Hamiltonian type in the Cartan type series over an algebraically closed field of characteristicp>2. In the generalized restricted Lie algebra setup, any irreducible representation ofLcorresponds uniquely to a (generalized)p-characterχ. When the height ofχis no more than min {pni−pni−1∣i=1,2,…,2r}−2, the corresponding irreducible representations are proved to be induced from irreducible representations of the distinguished maximal subalgebraL0with the aid of an analogy of Skryabin’s category ℭ for the generalized Jacobson–Witt algebras and modulo finitely many exceptional cases. Since the exceptional simple modules have been classified, we can then give a full description of the irreducible representations withp-characters of height below this number.


1962 ◽  
Vol 14 ◽  
pp. 293-303 ◽  
Author(s):  
B. Noonan

This paper considers the properties of the representation of a Lie algebra when restricted to an ideal, the subduced* representation of the ideal. This point of view leads to new forms for irreducible representations of Lie algebras, once the concept of matrices of invariance is developed. This concept permits us to show that irreducible representations of a Lie algebra, over an algebraically closed field, can be expressed as a Lie-Kronecker product whose factors are associated with the representation subduced on an ideal. Conversely, if one has such factors, it is shown that they can be put together to give an irreducible representation of the Lie algebra. A valuable guide to this work was supplied by a paper of Clifford (1).


Author(s):  
BIN SHU ◽  
YANG ZENG

Abstract In this paper, we study the center Z of the finite W-algebra $${\mathcal{T}}({\mathfrak{g}},e)$$ associated with a semi-simple Lie algebra $$\mathfrak{g}$$ over an algebraically closed field $$\mathbb{k}$$ of characteristic p≫0, and an arbitrarily given nilpotent element $$e \in{\mathfrak{g}} $$ We obtain an analogue of Veldkamp’s theorem on the center. For the maximal spectrum Specm(Z), we show that its Azumaya locus coincides with its smooth locus of smooth points. The former locus reflects irreducible representations of maximal dimension for $${\mathcal{T}}({\mathfrak{g}},e)$$ .


1965 ◽  
Vol 25 ◽  
pp. 211-220 ◽  
Author(s):  
Hiroshi Kimura

Let g be a semi-simple Lie algebra over an algebraically closed field K of characteristic 0. For finite dimensional representations of g, the following important results are known; 1) H1(g, V) = 0 for any finite dimensional g space V. This is equivalent to the complete reducibility of all the finite dimensional representations,2) Determination of all irreducible representations in connection with their highest weights.3) Weyl’s formula for the character of irreducible representations [9].4) Kostant’s formula for the multiplicity of weights of irreducible representations [6],5) The law of the decomposition of the tensor product of two irreducible representations [1].


2013 ◽  
Vol 13 (03) ◽  
pp. 1350101
Author(s):  
BIN SHU ◽  
YU-FENG YAO

Let L = X(m; n), X ∈ {W, S, H, K}, be a graded simple Lie algebra of Cartan type over an algebraically closed field of characteristic p > 3. Then L is a so-called generalized restricted Lie algebra. Let [Formula: see text] be the primitive p-envelope of L, and G = X(m; 1), a subalgebra of [Formula: see text]. In this paper, a close connection between Cartan invariants for [Formula: see text] and U(G, χ) is established, where χ ∈ L* is extended to be a linear function on [Formula: see text] trivially, and 1 ≤ ht (χ) < p-2+δXW. This reduces the study of projective representations of the generalized restricted Lie algebra L to the one of the corresponding restricted Lie algebra G. As a special case, we recover some results in [Shu and Jiang, On Cartan invariants and blocks of Zassenhaus algebras, Comm. Algebra33(10) (2005) 3619–3630].


2014 ◽  
Vol 13 (05) ◽  
pp. 1350146 ◽  
Author(s):  
MARTIN MYGIND

Working over an algebraically closed field of characteristic p > 3, we calculate the orbit closures in the Witt algebra W under the action of its automorphism group G. We also outline how the same techniques can be used to determine closures of orbits of all heights except p - 1 (in which case we only obtain a conditional statement) in the dual space W* under the induced action of G. As a corollary we prove that the algebra of invariants k[W*]G is trivial.


2021 ◽  
Vol 7 (2) ◽  
pp. 2084-2101
Author(s):  
Yang Pan ◽  
◽  
Yanyong Hong ◽  

<abstract><p>Let $ G $ be a connected standard simple algebraic group of type $ C $ or $ D $ over an algebraically closed field $ \Bbbk $ of positive characteristic $ p &gt; 0 $, and $ \mathfrak{g}: = \mathrm{Lie}(G) $ be the Lie algebra of $ G $. Motivated by the variety of $ \mathbb{E}(r, \mathfrak{g}) $ of $ r $-dimensional elementary subalgebras of a restricted Lie algebra $ \mathfrak{g} $, in this paper we characterize the irreducible components of $ \mathbb{E}(\mathrm{rk}_{p}(\mathfrak{g})-1, \mathfrak{g}) $ where the $ p $-rank $ \mathrm{rk}_{p}(\mathfrak{g}) $ is defined to be the maximal dimension of an elementary subalgebra of $ \mathfrak{g} $.</p></abstract>


2013 ◽  
Vol 89 (2) ◽  
pp. 234-242 ◽  
Author(s):  
DONALD W. BARNES

AbstractFor a Lie algebra $L$ over an algebraically closed field $F$ of nonzero characteristic, every finite dimensional $L$-module can be decomposed into a direct sum of submodules such that all composition factors of a summand have the same character. Using the concept of a character cluster, this result is generalised to fields which are not algebraically closed. Also, it is shown that if the soluble Lie algebra $L$ is in the saturated formation $\mathfrak{F}$ and if $V, W$ are irreducible $L$-modules with the same cluster and the $p$-operation vanishes on the centre of the $p$-envelope used, then $V, W$ are either both $\mathfrak{F}$-central or both $\mathfrak{F}$-eccentric. Clusters are used to generalise the construction of induced modules.


2014 ◽  
Vol 22 (2) ◽  
pp. 51-56
Author(s):  
A. S. Argáez

AbstractLet X be projective variety over an algebraically closed field k and G be a finite group with g.c.d.(char(k), |G|) = 1. We prove that any representations of G on a coherent sheaf, ρ : G → End(ℰ), has a natural decomposition ℰ ≃ ⊕ V ⊗k ℱV, where G acts trivially on ℱV and the sum run over all irreducible representations of G over k.


2016 ◽  
Vol 19 (1) ◽  
pp. 235-258 ◽  
Author(s):  
David I. Stewart

Let $G$ be a simple simply connected exceptional algebraic group of type $G_{2}$, $F_{4}$, $E_{6}$ or $E_{7}$ over an algebraically closed field $k$ of characteristic $p>0$ with $\mathfrak{g}=\text{Lie}(G)$. For each nilpotent orbit $G\cdot e$ of $\mathfrak{g}$, we list the Jordan blocks of the action of $e$ on the minimal induced module $V_{\text{min}}$ of $\mathfrak{g}$. We also establish when the centralizers $G_{v}$ of vectors $v\in V_{\text{min}}$ and stabilizers $\text{Stab}_{G}\langle v\rangle$ of $1$-spaces $\langle v\rangle \subset V_{\text{min}}$ are smooth; that is, when $\dim G_{v}=\dim \mathfrak{g}_{v}$ or $\dim \text{Stab}_{G}\langle v\rangle =\dim \text{Stab}_{\mathfrak{g}}\langle v\rangle$.


Sign in / Sign up

Export Citation Format

Share Document