Electrochemical and photophysical characterization of non-peripherally-octaalkyl substituted dichlorotin(IV) phthalocyanine and tetrabenzotriazaporphyrin compounds

2007 ◽  
Vol 11 (10) ◽  
pp. 761-770 ◽  
Author(s):  
Samson Khene ◽  
Andrew N. Cammidge ◽  
Michael J. Cook ◽  
Tebello Nyokong

Three non-peripherally substituted tin(IV) macrocylic compounds, octahexylphthalocyaninato dichlorotin(IV) (3a), octahexyltetrabenzo-5,10,15- triazaporphyrinato dichlorotin(IV) (3b) and octadecylphthalocyaninato dichlorotin(IV) (3c) were synthesized and their photophysical and electrochemical behavior studied. Complex 3b, containing a CH group in place of one of the aza nitrogen atoms of the phthalocyanine core, shows a split Q-band due to its lower symmetry. The triplet state quantum yields were found to be lower than would be expected on the basis of the heavy atom effect of tin as the central metal for phthalocyanine derivatives (3a and 3c). In contrast, 3b shows a triplet quantum yield Φ T = 0.78. The triplet state lifetimes were solvent dependent, and were higher in tetrahydrofuran than in toluene. Cyclic voltammetry and spectroelectrochemistry of the complexes revealed only ring-based redox processes.

1987 ◽  
Vol 42 (9) ◽  
pp. 1041-1042 ◽  
Author(s):  
H. Hopf ◽  
E. Hermann

Phosphorescence and fluorescence spectra, quantum yields of phosphorescence and fluorescence as well as phosphorescence lifetimes have been measured of six methyl-, chloro- and bromo-derivatives of [2.2] paracyclophane in ethanol at 77 K. While the chloro-derivatives as well as dibromo-paracyclophane exhibit a normal internal heavy-atom effect behaviour the momobromo-compound shows anomalies. These possibly indicate that in the monobromo-compound an additional pathway of the radiationless deactivation of the lowest triplet state is effective which does not occur with the other compounds.


1973 ◽  
Vol 28 (11) ◽  
pp. 1869-1870
Author(s):  
M. Zander

Phosphorescence quantum yields of six non-fluorescing naphthalene derivatives have been measured in ethanol and ethanol-ethylbromide 1:1 at 77 °K. The observed enhancement of phosphorescence yield of four of these in the heavy atom solvent is explained with the assumption that the rate of the phosphorescence transition is increased relatively to the radiationless desactivation of the triplet state.


2002 ◽  
Vol 736 ◽  
Author(s):  
Michael F. Pepitone ◽  
Kalya Eaiprasertsak ◽  
Stephen S. Hardaker ◽  
Richard V. Gregory

ABSTRACTSynthesis and functionalization of 3-bromothiophene afforded novel 2,5-bis[(3,4-ethylenedioxy)thien-2-yl]-)-3-substituted thiopehene monomers with blue emission characteristics and having a quantum yield of 3–5%. Cyclic voltammetry was employed to investigate the electrochemical behavior of the four monomers reported here. Polymer films were deposited by repeated potential cycling. These materials are considered for use in tailoring properties in opto-electronic device applications.


2005 ◽  
Vol 09 (02) ◽  
pp. 121-129 ◽  
Author(s):  
Abimbola Ogunsipe ◽  
Tebello Nyokong

The photophysical and photochemical properties and quenching (by 1,4-benzoquinone) of metallophthalocyanine sulfonates of aluminium ( AlPcSmix), zinc ( ZnPcSmix), silicon ( SiPcSmix), germanium ( GePcSmix) and tin ( SnPcSmix) are presented. The quantum yield values of fluorescence (ΦF), triplet state (ΦT), singlet oxygen (ΦΔ) and photodegradation (Φd) were determined and the observed trends in their variation among the complexes discussed in terms of aggregation and the heavy atom effect. 1,4-benzoquinone effectively quenched the fluorescence of the complexes. Quenching analyses gave positive deviations from Stern-Volmer behavior, suggesting the existence of static quenching in addition to dynamic quenching. The static and dynamic components of the quenching were separated using a modified Stern-Volmer equation and the “sphere of action quenching model”. The quenching constant was found to be a function of the radius of the central metal ion.


1983 ◽  
Vol 38 (6) ◽  
pp. 698-700 ◽  
Author(s):  
H. Dreeskamp ◽  
A. Läufer ◽  
M. Zander

The fluorescence of perylene in fluid solution (λ0.0 = 440 nm) is quenched by silver ions in a dynamic process according to a Stern-Volmer kinetics (kq = 2 · 109 [1 • mol-1 · sec-1], in ethanol at 295 K). Simultaneously an unstructured long-wavelength emission (λmax ≈ 470 nm) appears which we assign to a perylene/Ag+ exciplex. A similar emission is observed when other polvcyclic aromatic compounds (PAC) are used, whose fluorescence as in the case of perylene is not easily quenched in an external heavy atom effect by iodopropane (kq ≦ 106). In these cases the excited PAC/Ag+ complex is long-lived enough to emit fluorescence since the intersystem crossing to the triplet system is slow due to the absence of an energetically favorable accepting triplet state


2020 ◽  
Vol 56 (11) ◽  
pp. 1721-1724 ◽  
Author(s):  
Yuqi Hou ◽  
Qingyun Liu ◽  
Jianzhang Zhao

Heavy atom-free dyads showing a red light-absorbing and exceptionally long-lived triplet state based on a spin–orbital charge transfer intersystem crossing mechanism.


Quantum yields of triplet state formation and extinction coefficients of the triplet states have been determined by direct depletion methods for solutions of anthracene, phenanthrene, 1,2,5,6-dibenzanthracene, fluorescein, dibromofluorescein, eosin and erythrosin. The values obtained for the hydrocarbons are in reasonable agreement with those obtained by other workers using energy transfer and heavy atom perturbation techniques. In all cases which we have studied, the sum of the quantum yields of fluorescence and triplet state formation is equal to unity within the limits of experimental error, showing that radiationless transfer from the excited singlet to the ground state is negligible.


Sign in / Sign up

Export Citation Format

Share Document