A Multi-Phase Hybrid Metaheuristics Approach for the Exam Timetabling

Author(s):  
Ali Hmer ◽  
Malek Mouhoub

We propose a Multi-Phase Hybrid Metaheuristics approach for solving the Exam Timetabling Problem (ETP). This approach is defined with three phases: pre-processing phase, construction phase and enhancement phase. The pre-processing phase relies on our variable ordering heuristic as well as a form of transitive closure for discovering implicit constraints. The construction phase uses a variant of the Tabu Search with conflicts dictionary. The enhancement phase includes Hill Climbing (HC), Simulated Annealing (SA) and our updated version of the extended “Great Deluge” algorithm. In order to evaluate the performance of the different phases of our proposed approach, we conducted several experiments on instances taken from ITC 2007 benchmarking datasets. The results are very promising and competitive with the well known ETP solvers.

2013 ◽  
Vol 748 ◽  
pp. 666-669 ◽  
Author(s):  
Xing Wen Zhang

In this paper we compare the performance of metaheuristic methods, namely simulated annealing and Tabu Search, against simple hill climbing heuristic on a supply chain optimization problem. The benchmark problem we consider is the retailer replenishment optimization problem for a retailer selling multiple products. Computation and simulation results demonstrate that simulated annealing and Tabu search improve solution quality. However, the performance improvement is less in simulations with random noise. Lastly, simulated annealing appears to be more robust than Tabu search, and the results justify its extra implementation effort and computation time when compared against hill climbing.


2007 ◽  
Vol 16 (03) ◽  
pp. 537-544 ◽  
Author(s):  
ANDREW LIM ◽  
BRIAN RODRIGUES ◽  
FEI XIAO

We propose a simple and direct node shifting method with hill climbing for the well-known matrix bandwidth minimization problem. Many heuristics have been developed for this NP-complete problem including the Cuthill-McKee (CM) and the Gibbs, Poole and Stockmeyer (GPS) algorithms. Recently, heuristics such as Simulated Annealing, Tabu Search and GRASP have been used, where Tabu Search and the GRASP with Path Relinking achieved significantly better solution quality than the CM and GPS algorithms. Experimentation shows that our method achieves the best solution quality when compared with these while being much faster than newly-developed algorithms.


2020 ◽  
Vol 4 (4) ◽  
pp. 664-671
Author(s):  
Gabriella Icasia ◽  
Raras Tyasnurita ◽  
Etria Sepwardhani Purba

Examination Timetabling Problem is one of the optimization and combinatorial problems. It is proved to be a non-deterministic polynomial (NP)-hard problem. On a large scale of data, the examination timetabling problem becomes a complex problem and takes time if it solved manually. Therefore, heuristics exist to provide reasonable enough solutions and meet the constraints of the problem. In this study, a real-world dataset of Examination Timetabling (Toronto dataset) is solved using a Hill-Climbing and Tabu Search algorithm. Different from the approach in the literature, Tabu Search is a meta-heuristic method, but we implemented a Tabu Search within the hyper-heuristic framework. The main objective of this study is to provide a better understanding of the application of Hill-Climbing and Tabu Search in hyper-heuristics to solve timetabling problems. The results of the experiments show that Hill-Climbing and Tabu Search succeeded in automating the timetabling process by reducing the penalty 18-65% from the initial solution. Besides, we tested the algorithms within 10,000-100,000 iterations, and the results were compared with a previous study. Most of the solutions generated from this experiment are better compared to the previous study that also used Tabu Search algorithm.


Author(s):  
Shinta Dewi ◽  
Raras Tyasnurita ◽  
Febriyora Surya Pratiwi

Scheduling exams in colleges are a complicated job that is difficult to solve conventionally. Exam timetabling is one of the combinatorial optimization problems where there is no exact algorithm that can answer the problem with the optimum solution and minimum time possible. This study investigated the University of Toronto benchmark dataset, which provides 13 real instances regarding the scheduling of course exams from various institutions. The hard constraints for not violate the number of time slots must be fulfilled while paying attention to fitness and running time. Algorithm of largest degree, hill climbing, and tabu search within a hyper-heuristic framework is investigated with regards to each performance. This study shows that the Tabu search algorithm produces much lower penalty value for all datasets by reducing 18-58% from the initial solution.


2020 ◽  
Author(s):  
Jiawei LI ◽  
Tad Gonsalves

This paper presents a Genetic Algorithm approach to solve a specific examination timetabling problem which is common in Japanese Universities. The model is programmed in Excel VBA programming language, which can be run on the Microsoft Office Excel worksheets directly. The model uses direct chromosome representation. To satisfy hard and soft constraints, constraint-based initialization operation, constraint-based crossover operation and penalty points system are implemented. To further improve the result quality of the algorithm, this paper designed an improvement called initial population pre-training. The proposed model was tested by the real data from Sophia University, Tokyo, Japan. The model shows acceptable results, and the comparison of results proves that the initial population pre-training approach can improve the result quality.


Sign in / Sign up

Export Citation Format

Share Document