scholarly journals The Baer–Kaplansky Theorem for All Abelian Groups and Modules

Author(s):  
Simion Breaz ◽  
Tomasz Brzeziński

It is shown that the Baer–Kaplansky Theorem can be extended to all abelian groups provided that the rings of endomorphisms of groups are replaced by trusses of endomorphisms of corresponding heaps. That is, every abelian group is determined up to isomorphism by its endomorphism truss and every isomorphism between two endomorphism trusses associated to some abelian groups [Formula: see text] and [Formula: see text] is induced by an isomorphism between [Formula: see text] and [Formula: see text] and an element from [Formula: see text]. This correspondence is then extended to all modules over a ring by considering heaps of modules. It is proved that the truss of endomorphisms of a heap associated to a module [Formula: see text] determines [Formula: see text] as a module over its endomorphism ring.

2015 ◽  
Vol 0 (0) ◽  
Author(s):  
Andrey R. Chekhlov ◽  
Peter V. Danchev

AbstractThere are two rather natural questions which arise in connection with the endomorphism ring of an Abelian group: when is the ring generated by its commutators, and when is the ring additively generated by its commutators? The current work explores these two problems for arbitrary Abelian groups. This leads in a standard way to consideration of two improved versions of Kaplansky's notion of full transitivity, which we call


Author(s):  
Bodan Arsovski

Abstract Extending a result by Alon, Linial, and Meshulam to abelian groups, we prove that if G is a finite abelian group of exponent m and S is a sequence of elements of G such that any subsequence of S consisting of at least $$|S| - m\ln |G|$$ elements generates G, then S is an additive basis of G . We also prove that the additive span of any l generating sets of G contains a coset of a subgroup of size at least $$|G{|^{1 - c{ \in ^l}}}$$ for certain c=c(m) and $$ \in = \in (m) < 1$$ ; we use the probabilistic method to give sharper values of c(m) and $$ \in (m)$$ in the case when G is a vector space; and we give new proofs of related known results.


Author(s):  
M. Ferrara ◽  
M. Trombetti

AbstractLet G be an abelian group. The aim of this short paper is to describe a way to identify pure subgroups H of G by looking only at how the subgroup lattice $$\mathcal {L}(H)$$ L ( H ) embeds in $$\mathcal {L}(G)$$ L ( G ) . It is worth noticing that all results are carried out in a local nilpotent context for a general definition of purity.


Author(s):  
Fysal Hasani ◽  
Fatemeh Karimi ◽  
Alireza Najafizadeh ◽  
Yousef Sadeghi

AbstractThe square subgroup of an abelian group


2011 ◽  
Vol 10 (03) ◽  
pp. 377-389
Author(s):  
CARLA PETRORO ◽  
MARKUS SCHMIDMEIER

Let Λ be a commutative local uniserial ring of length n, p be a generator of the maximal ideal, and k be the radical factor field. The pairs (B, A) where B is a finitely generated Λ-module and A ⊆B a submodule of B such that pmA = 0 form the objects in the category [Formula: see text]. We show that in case m = 2 the categories [Formula: see text] are in fact quite similar to each other: If also Δ is a commutative local uniserial ring of length n and with radical factor field k, then the categories [Formula: see text] and [Formula: see text] are equivalent for certain nilpotent categorical ideals [Formula: see text] and [Formula: see text]. As an application, we recover the known classification of all pairs (B, A) where B is a finitely generated abelian group and A ⊆ B a subgroup of B which is p2-bounded for a given prime number p.


2017 ◽  
Vol 16 (10) ◽  
pp. 1750200 ◽  
Author(s):  
László Székelyhidi ◽  
Bettina Wilkens

In 2004, a counterexample was given for a 1965 result of R. J. Elliott claiming that discrete spectral synthesis holds on every Abelian group. Since then the investigation of discrete spectral analysis and synthesis has gained traction. Characterizations of the Abelian groups that possess spectral analysis and spectral synthesis, respectively, were published in 2005. A characterization of the varieties on discrete Abelian groups enjoying spectral synthesis is still missing. We present a ring theoretical approach to the issue. In particular, we provide a generalization of the Principal Ideal Theorem on discrete Abelian groups.


1981 ◽  
Vol 90 (2) ◽  
pp. 273-278 ◽  
Author(s):  
C. T. Stretch

The object of this paper is to prove that for a finite abelian group G the natural map is injective, where Â(G) is the completion of the Burnside ring of G and σ0(BG) is the stable cohomotopy of the classifying space BG of G. The map â is detected by means of an M U* exponential characteristic class for permutation representations constructed in (11). The result is a generalization of a theorem of Laitinen (4) which treats elementary abelian groups using ordinary cohomology. One interesting feature of the present proof is that it makes explicit use of the universality of the formal group law of M U*. It also involves a computation of M U*(BG) in terms of the formal group law. This may be of independent interest. Since writing the paper the author has discovered that M U*(BG) has previously been calculated by Land-weber(5).


2018 ◽  
Vol 167 (02) ◽  
pp. 229-247
Author(s):  
TAKAO SATOH

AbstractIn this paper, we study “the ring of component functions” of SL(2, C)-representations of free abelian groups. This is a subsequent research of our previous work [11] for free groups. We introduce some descending filtration of the ring, and determine the structure of its graded quotients.Then we give two applications. In [30], we constructed the generalized Johnson homomorphisms. We give an upper bound on their images with the graded quotients. The other application is to construct a certain crossed homomorphisms of the automorphism groups of free groups. We show that our crossed homomorphism induces Morita's 1-cocycle defined in [22]. In other words, we give another construction of Morita's 1-cocyle with the SL(2, C)-representations of the free abelian group.


2017 ◽  
Vol 27 (04) ◽  
pp. 351-360
Author(s):  
Andrey Chekhlov ◽  
Peter Danchev

We define the concept of an [Formula: see text]-co-Hopfian abelian group, which is a nontrivial generalization of the classical notion of a co-Hopfian group. A systematic and comprehensive study of these groups is given in very different ways. Specifically, a representation theorem for [Formula: see text]-co-Hopfian groups is established as well as it is shown that there exists an [Formula: see text]-co-Hopfian group which is not co-Hopfian.


Sign in / Sign up

Export Citation Format

Share Document