ENTIRE FUNCTIONS SHARING ARGUMENTS OF INTEGRALITY, I

2009 ◽  
Vol 05 (02) ◽  
pp. 339-353 ◽  
Author(s):  
JONATHAN PILA

Let f be an entire function that is real and strictly increasing for all sufficiently large real arguments, and that satisfies certain additional conditions, and let Xf be the set of non-negative real numbers at which f is integer valued. Suppose g is an entire function that takes integer values on Xf. We find growth conditions under which f,g must be algebraically dependent (over ℤ) on X. The result generalizes a weak form of a theorem of Pólya.

2010 ◽  
Vol 53 (1) ◽  
pp. 11-22 ◽  
Author(s):  
Maxim R. Burke

AbstractLet f : ℝn → ℝ be C∞ and let h: ℝn → ℝ be positive and continuous. For any unbounded nondecreasing sequence ﹛ck﹜ of nonnegative real numbers and for any sequence without accumulation points ﹛xm﹜ in ℝn, there exists an entire function g : ℂn → ℂ taking real values on ℝn such thatThis is a version for functions of several variables of the case n = 1 due to L. Hoischen.


1976 ◽  
Vol 19 (1) ◽  
pp. 109-112 ◽  
Author(s):  
Lawrence Gruman

Let {sm} be a discrete set of points in ℂN and λm any sequence of points in ℂ. We shall be interested in finding an entire function F(z) such that F(sm)=λm. This is of course easy if no restriction is placed on F, but we shall be interested in finding an F which in addition satisfies certain growth conditions.We shall denote the variable z=(z1,..., zN), zj=xj+iyj,


2020 ◽  
Vol 18 (1) ◽  
pp. 211-215
Author(s):  
Shengjiang Chen ◽  
Aizhu Xu

Abstract Let f(z) be an entire function of hyper order strictly less than 1. We prove that if f(z) and its nth exact difference {\Delta }_{c}^{n}f(z) share 0 CM and 1 IM, then {\Delta }_{c}^{n}f(z)\equiv f(z) . Our result improves the related results of Zhang and Liao [Sci. China A, 2014] and Gao et al. [Anal. Math., 2019] by using a simple method.


1973 ◽  
Vol 51 ◽  
pp. 123-130 ◽  
Author(s):  
Fred Gross ◽  
Chung-Chun Yang ◽  
Charles Osgood

An entire function F(z) = f(g(z)) is said to have f(z) and g(z) as left and right factors respe2tively, provided that f(z) is meromorphic and g(z) is entire (g may be meromorphic when f is rational). F(z) is said to be prime (pseudo-prime) if every factorization of the above form implies that one of the functions f and g is bilinear (a rational function). F is said to be E-prime (E-pseudo prime) if every factorization of the above form into entire factors implies that one of the functions f and g is linear (a polynomial). We recall here that an entire non-periodic function f is prime if and only if it is E-prime [5]. This fact will be useful in the sequel.


1995 ◽  
Vol 138 ◽  
pp. 169-177 ◽  
Author(s):  
Hong-Xun yi

For any set S and any entire function f letwhere each zero of f — a with multiplicity m is repeated m times in Ef(S) (cf. [1]). It is assumed that the reader is familiar with the notations of the Nevanlinna Theory (see, for example, [2]). It will be convenient to let E denote any set of finite linear measure on 0 < r < ∞, not necessarily the same at each occurrence. We denote by S(r, f) any quantity satisfying .


1995 ◽  
Vol 118 (3) ◽  
pp. 527-542 ◽  
Author(s):  
A. C. Offord

SummaryThis is a study of entire functions whose coefficients are independent random variables. When the space of such functions is symmetric it is shown that independence of the coefficients alone is sufficient to ensure that almost all such functions will, for large z, be large except in certain small neighbourhoods of the zeros called pits. In each pit the function takes every not too large value and these pits have a certain uniform distribution.


1988 ◽  
Vol 38 (3) ◽  
pp. 351-356 ◽  
Author(s):  
Peter L. Walker

We consider the Abelian functional equationwhere φ is a given entire function and g is to be found. The inverse function f = g−1 (if one exists) must satisfyWe show that for a wide class of entire functions, which includes φ(z) = ez − 1, the latter equation has a non-constant entire solution.


1966 ◽  
Vol 15 (2) ◽  
pp. 121-123 ◽  
Author(s):  
S. L. Segal

Let f(z) be an entire function, M(r) the maximum of f(z) on ∣z∣=r, and λ>1. Let Eλ=Eλ(f{z:log∣f(z)≦(1-λ)log(M∣z∣)}, and denote the density of Eλbywhere m is planar measure.


Sign in / Sign up

Export Citation Format

Share Document