Effect of La0.67Sr0.33 MnO3 Insertion Layer on the Ferroelectric and Resistive Switching Behaviors of PbZr0.52Ti0.48O3/Nb:SrTiO3 Heterostructures

NANO ◽  
2020 ◽  
Vol 15 (07) ◽  
pp. 2050084
Author(s):  
Jing Yi Dong ◽  
Yu Bai ◽  
Hang Yu Zheng ◽  
He Yang Huang ◽  
Jun Liang Lin ◽  
...  

Recently, ferroelectric resistive switching (RS) effect in the ferroelectric/semiconductor heterostructures has been widely studied and the RS performance has been greatly improved. However, the relationships between ferroelectric and RS behaviors as well as interface structure of ferroelectric/semiconductor heterostructures need to be further studied. Herein, a [Formula: see text][Formula: see text]MnO3 (LSMO) layer with the thickness of 7 nm is inserted into [Formula: see text][Formula: see text]O3/Nb:SrTiO3 (PZT/NSTO) heterostructures, and its effects on the ferroelectric and RS behaviors are investigated. The PZT/NSTO heterostructures show significantly asymmetric ferroelectric loops, and the RS ratio in which can reach to three orders of magnitude. However, by inserting the LSMO layer, the ferroelectric loops became relatively symmetric, but the RS effect almost disappeared. It can be considered that the LSMO layer affects the interfacial energy band structure of the PZT/NSTO heterostructures, which makes ferroelectric polarization lose its effect on the modulation of the depletion layer width. Therefore, the existence of the adjustable depletion layer is very important for the RS effect of ferroelectric/semiconductor heterostructures.

2020 ◽  
Vol 22 (23) ◽  
pp. 13277-13284
Author(s):  
Wanchao Zheng ◽  
Yuchen Wang ◽  
Chao Jin ◽  
Ruihua Yin ◽  
Dong Li ◽  
...  

The resistive switching behavior in the Pt/Fe/BiFeO3/SrRuO3 heterostructures was observed. It results from the ferroelectric polarization modulated the depletion layer width around the BiFeO3/SrRuO3 interface.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Moyao Zhang ◽  
Qi Chen ◽  
Rongming Xue ◽  
Yu Zhan ◽  
Cheng Wang ◽  
...  

Abstract Charged defects at the surface of the organic–inorganic perovskite active layer are detrimental to solar cells due to exacerbated charge carrier recombination. Here we show that charged surface defects can be benign after passivation and further exploited for reconfiguration of interfacial energy band structure. Based on the electrostatic interaction between oppositely charged ions, Lewis-acid-featured fullerene skeleton after iodide ionization (PCBB-3N-3I) not only efficiently passivates positively charged surface defects but also assembles on top of the perovskite active layer with preferred orientation. Consequently, PCBB-3N-3I with a strong molecular electric dipole forms a dipole interlayer to reconfigure interfacial energy band structure, leading to enhanced built-in potential and charge collection. As a result, inverted structure planar heterojunction perovskite solar cells exhibit the promising power conversion efficiency of 21.1% and robust ambient stability. This work opens up a new window to boost perovskite solar cells via rational exploitation of charged defects beyond passivation.


1967 ◽  
Vol 22 (2) ◽  
pp. 491-497 ◽  
Author(s):  
D. J. Morgan ◽  
J. A. Galloway

1997 ◽  
Vol 11 (11) ◽  
pp. 477-483 ◽  
Author(s):  
Z. J. Li ◽  
H. B. Xu ◽  
K. L. Yao

Starting from the extensional Su–Schrieffer–Heeger model taking into account the effects of interchain coupling, we have studied the energy spectra and electronic states of soliton excitation in polyacene. The dimerized displacement u0 is found to be similar to the case of trans-polyacetylene, and equals to 0.04 Å. The energy-band gap is 0.38 eV, in agreement with the results derived by other authors. Two new bound electronic states have been found in the conduction band and in the valence band, which is different from the one of trans-polyacetylene. There exists two degenerate soliton states in the center of energy gap. Furthermore, the distribution of charge density and spin density have been discussed in detail.


1975 ◽  
Vol 19 (3-4) ◽  
pp. 269-289 ◽  
Author(s):  
Chhi-Chong Wu ◽  
Jensan Tsai ◽  
Chung-Chan Wu

Sign in / Sign up

Export Citation Format

Share Document