Sensors to Events: Semantic Modeling and Recognition of Events from Data Streams

2016 ◽  
Vol 10 (04) ◽  
pp. 461-501 ◽  
Author(s):  
Om Prasad Patri ◽  
Anand V. Panangadan ◽  
Vikrambhai S. Sorathia ◽  
Viktor K. Prasanna

Detecting and responding to real-world events is an integral part of any enterprise or organization, but Semantic Computing has been largely underutilized for complex event processing (CEP) applications. A primary reason for this gap is the difference in the level of abstraction between the high-level semantic models for events and the low-level raw data values received from sensor data streams. In this work, we investigate the need for Semantic Computing in various aspects of CEP, and intend to bridge this gap by utilizing recent advances in time series analytics and machine learning. We build upon the Process-oriented Event Model, which provides a formal approach to model real-world objects and events, and specifies the process of moving from sensors to events. We extend this model to facilitate Semantic Computing and time series data mining directly over the sensor data, which provides the advantage of automatically learning the required background knowledge without domain expertise. We illustrate the expressive power of our model in case studies from diverse applications, with particular emphasis on non-intrusive load monitoring in smart energy grids. We also demonstrate that this powerful semantic representation is still highly accurate and performs at par with existing approaches for event detection and classification.

AI ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 48-70
Author(s):  
Wei Ming Tan ◽  
T. Hui Teo

Prognostic techniques attempt to predict the Remaining Useful Life (RUL) of a subsystem or a component. Such techniques often use sensor data which are periodically measured and recorded into a time series data set. Such multivariate data sets form complex and non-linear inter-dependencies through recorded time steps and between sensors. Many current existing algorithms for prognostic purposes starts to explore Deep Neural Network (DNN) and its effectiveness in the field. Although Deep Learning (DL) techniques outperform the traditional prognostic algorithms, the networks are generally complex to deploy or train. This paper proposes a Multi-variable Time Series (MTS) focused approach to prognostics that implements a lightweight Convolutional Neural Network (CNN) with attention mechanism. The convolution filters work to extract the abstract temporal patterns from the multiple time series, while the attention mechanisms review the information across the time axis and select the relevant information. The results suggest that the proposed method not only produces a superior accuracy of RUL estimation but it also trains many folds faster than the reported works. The superiority of deploying the network is also demonstrated on a lightweight hardware platform by not just being much compact, but also more efficient for the resource restricted environment.


Author(s):  
Meenakshi Narayan ◽  
Ann Majewicz Fey

Abstract Sensor data predictions could significantly improve the accuracy and effectiveness of modern control systems; however, existing machine learning and advanced statistical techniques to forecast time series data require significant computational resources which is not ideal for real-time applications. In this paper, we propose a novel forecasting technique called Compact Form Dynamic Linearization Model-Free Prediction (CFDL-MFP) which is derived from the existing model-free adaptive control framework. This approach enables near real-time forecasts of seconds-worth of time-series data due to its basis as an optimal control problem. The performance of the CFDL-MFP algorithm was evaluated using four real datasets including: force sensor readings from surgical needle, ECG measurements for heart rate, and atmospheric temperature and Nile water level recordings. On average, the forecast accuracy of CFDL-MFP was 28% better than the benchmark Autoregressive Integrated Moving Average (ARIMA) algorithm. The maximum computation time of CFDL-MFP was 49.1ms which was 170 times faster than ARIMA. Forecasts were best for deterministic data patterns, such as the ECG data, with a minimum average root mean squared error of (0.2±0.2).


2022 ◽  
Vol 3 (1) ◽  
pp. 1-26
Author(s):  
Omid Hajihassani ◽  
Omid Ardakanian ◽  
Hamzeh Khazaei

The abundance of data collected by sensors in Internet of Things devices and the success of deep neural networks in uncovering hidden patterns in time series data have led to mounting privacy concerns. This is because private and sensitive information can be potentially learned from sensor data by applications that have access to this data. In this article, we aim to examine the tradeoff between utility and privacy loss by learning low-dimensional representations that are useful for data obfuscation. We propose deterministic and probabilistic transformations in the latent space of a variational autoencoder to synthesize time series data such that intrusive inferences are prevented while desired inferences can still be made with sufficient accuracy. In the deterministic case, we use a linear transformation to move the representation of input data in the latent space such that the reconstructed data is likely to have the same public attribute but a different private attribute than the original input data. In the probabilistic case, we apply the linear transformation to the latent representation of input data with some probability. We compare our technique with autoencoder-based anonymization techniques and additionally show that it can anonymize data in real time on resource-constrained edge devices.


Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2146
Author(s):  
Mikhail Zymbler ◽  
Elena Ivanova

Currently, big sensor data arise in a wide spectrum of Industry 4.0, Internet of Things, and Smart City applications. In such subject domains, sensors tend to have a high frequency and produce massive time series in a relatively short time interval. The data collected from the sensors are subject to mining in order to make strategic decisions. In the article, we consider the problem of choosing a Time Series Database Management System (TSDBMS) to provide efficient storing and mining of big sensor data. We overview InfluxDB, OpenTSDB, and TimescaleDB, which are among the most popular state-of-the-art TSDBMSs, and represent different categories of such systems, namely native, add-ons over NoSQL systems, and add-ons over relational DBMSs (RDBMSs), respectively. Our overview shows that, at present, TSDBMSs offer a modest built-in toolset to mine big sensor data. This leads to the use of third-party mining systems and unwanted overhead costs due to exporting data outside a TSDBMS, data conversion, and so on. We propose an approach to managing and mining sensor data inside RDBMSs that exploits the Matrix Profile concept. A Matrix Profile is a data structure that annotates a time series through the index of and the distance to the nearest neighbor of each subsequence of the time series and serves as a basis to discover motifs, anomalies, and other time-series data mining primitives. This approach is implemented as a PostgreSQL extension that allows an application programmer both to compute matrix profiles and mining primitives and to represent them as relational tables. Experimental case studies show that our approach surpasses the above-mentioned out-of-TSDBMS competitors in terms of performance since it assumes that sensor data are mined inside a TSDBMS at no significant overhead costs.


While analyzing iot projects it is very expensive to buy a lot of sensors , corresponding processor boards, power supplies etc. Moreover the entire process is to be replicated to cater to large topologies. The whole experiment is to be planned at a large scale before we can actually start to see analytics working. At a smaller scale this can be implemented as a simulation program in linux where the sensor data is created using a random number generator and scaled appropriately for each type of sensor to mimic representative data. This is them encrypted before sending it over the network to the edge nodes. At the server a socket stream now continuously awaits sensor data Here the required sensor data is retrieved and decrypted to give true time series data. This time series is now given to an analytics engine which calculates the trends and cyclicity and is used to train a neural network. The anomalies so found are properly deciphered. The multiplicity of the nodes can be characterized by having several client programs running in separate terminals. A simple client server architecture is thus able to simulate a large iot infrastructure and is able to perform analytics on a scaled model


Sign in / Sign up

Export Citation Format

Share Document