PULSE VACCINATION IN THE PERIODIC INFECTION RATE SIR EPIDEMIC MODEL

2008 ◽  
Vol 01 (04) ◽  
pp. 409-432 ◽  
Author(s):  
ZHEN JIN ◽  
MAINUL HAQUE ◽  
QUANXING LIU

In this paper a pulse vaccination SIR model with periodic infection rate β(t) is studied. The basic reproductive number R0 is defined. The dynamical behavior of the model is analyzed. It is proved that the infection-free periodic solution is globally stable if R0 < 1. The infection-free periodic solution is unstable and the disease will uniform persistence when R0 > 1. We use standard bifurcation theory to show the existence of the positive periodic solution when R0 → 1+. Numerical simulation can give suggestion, the system has a unique positive periodic, and it is globally stable when R0 > 1.

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Wencai Zhao ◽  
Juan Li ◽  
Xinzhu Meng

SIR epidemic model with nonlinear pulse vaccination and lifelong immunity is proposed. Due to the limited medical resources, vaccine immunization rate is considered as a nonlinear saturation function. Firstly, by using stroboscopic map and fixed point theory of difference equations, the existence of disease-free periodic solution is discussed, and the globally asymptotical stability of disease-free periodic solution is proven by using Floquet multiplier theory and differential impulsive comparison theorem. Moreover, by using the bifurcation theorem, sufficient condition for the existence of positive periodic solution is obtained by choosing impulsive vaccination period as a bifurcation parameter. Lastly, some simulations are given to validate the theoretical results.


2007 ◽  
Vol 15 (02) ◽  
pp. 203-218 ◽  
Author(s):  
WENJUN CAO ◽  
ZHEN JIN

In this paper, an SIR epidemic model with constant recruitment is considered. The dynamic behavior of this disease model with constant and pulse birth are analyzed. With constant birth, the infection-free equilibrium is locally and globally stable when the basic reproductive number R0 < 1. However, with pulse birth the system converges to a stable period solution with the number of infectious individuals equal to zero. Furthermore, the local and global stability of the periodic infection-free solution is obtained if the basic reproductive number [Formula: see text]. Numerical simulation shows that the periodic infection-free solution is unstable and the disease will persist when [Formula: see text]. The effectiveness of the constant and pulse birth to eliminating the disease are compared.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 675 ◽  
Author(s):  
A. George Maria Selvam ◽  
D. Abraham Vianny

In this paper we investigate the dynamical behavior of a SIR epidemic model of fractional order. Disease Free Equilibrium point, Endemic Equilibrium point and basic reproductive number are obtained. Time series plots, phase portraits and bifurcation diagrams are presented for suitable parameter values. Also some numerical examples are provided to illustrate the dynamics of the system.  


2009 ◽  
Vol 2009 ◽  
pp. 1-18
Author(s):  
Juping Zhang ◽  
Zhen Jin ◽  
Yakui Xue ◽  
Youwen Li

An SIR epidemic model with pulse birth and standard incidence is presented. The dynamics of the epidemic model is analyzed. The basic reproductive numberR∗is defined. It is proved that the infection-free periodic solution is global asymptotically stable ifR∗<1. The infection-free periodic solution is unstable and the disease is uniform persistent ifR∗>1. Our theoretical results are confirmed by numerical simulations.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Zhixing Hu ◽  
Shanshan Yin ◽  
Hui Wang

This paper established a delayed vector-borne disease model with saturated infection rate and cure rate. First of all, according to the basic reproductive number R0, we determined the disease-free equilibrium E0 and the endemic equilibrium E1. Through the analysis of the characteristic equation, we consider the stability of two equilibriums. Furthermore, the effect on the stability of the endemic equilibrium E1 by delay was studied, the existence of Hopf bifurcations of this system in E1 was analyzed, and the length of delay to preserve stability was estimated. The direction and stability of the Hopf bifurcation were also been determined. Finally, we performed some numerical simulation to illustrate our main results.


2007 ◽  
Vol 2007 ◽  
pp. 1-10 ◽  
Author(s):  
Shujing Gao ◽  
Zhidong Teng ◽  
Juan J. Nieto ◽  
Angela Torres

Pulse vaccination, the repeated application of vaccine over a defined age range, is gaining prominence as an effective strategy for the elimination of infectious diseases. An SIR epidemic model with pulse vaccination and distributed time delay is proposed in this paper. Using the discrete dynamical system determined by the stroboscopic map, we obtain the exact infection-free periodic solution of the impulsive epidemic system and prove that the infection-free periodic solution is globally attractive if the vaccination rate is larger enough. Moreover, we show that the disease is uniformly persistent if the vaccination rate is less than some critical value. The permanence of the model is investigated analytically. Our results indicate that a large pulse vaccination rate is sufficient for the eradication of the disease.


2017 ◽  
Vol 11 (1) ◽  
pp. 64-72 ◽  
Author(s):  
Daisuke Furushima ◽  
Shoko Kawano ◽  
Yuko Ohno ◽  
Masayuki Kakehashi

Background: The novel influenza A (H1N1) pdm09 (A/H1N1pdm) pandemic of 2009-2010 had a great impact on society. Objective: We analyzed data from the absentee survey, conducted in elementary schools of Oita City, to evaluate the A/H1N1pdm pandemic and to estimate the basic reproductive number (R0 ) of this novel strain. Method: We summarized the overall absentee data and calculated the cumulative infection rate. Then, we classified the data into 3 groups according to school size: small (<300 students), medium (300–600 students), and large (>600 students). Last, we estimated the R0 value by using the Susceptible-Infected-Recovered (SIR) mathematical model. Results: Data from 60 schools and 27,403 students were analyzed. The overall cumulative infection rate was 44.4%. There were no significant differences among the grades, but the cumulative infection rate increased as the school size increased, being 37.7%, 44.4%, and 46.6% in the small, medium, and large school groups, respectively. The optimal R0 value was 1.33, comparable with that previously reported. The data from the absentee survey were reliable, with no missing values. Hence, the R0 derived from the SIR model closely reflected the observed R0 . The findings support previous reports that school children are most susceptible to A/H1N1pdm virus infection and suggest that the scale of an outbreak is associated with the size of the school. Conclusion: Our results provide further information about the A/H1N1pdm pandemic. We propose that an absentee survey should be implemented in the early stages of an epidemic, to prevent a pandemic.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Zizi Wang ◽  
Zhiming Guo

A new epidemiological model is introduced with nonlinear incidence, in which the infected disease may lose infectiousness and then evolves to a chronic noninfectious disease when the infected disease has not been cured for a certain timeτ. The existence, uniqueness, and stability of the disease-free equilibrium and endemic equilibrium are discussed. The basic reproductive numberR0is given. The model is studied in two cases: with and without time delay. For the model without time delay, the disease-free equilibrium is globally asymptotically stable provided thatR0≤1; ifR0>1, then there exists a unique endemic equilibrium, and it is globally asymptotically stable. For the model with time delay, a sufficient condition is given to ensure that the disease-free equilibrium is locally asymptotically stable. Hopf bifurcation in endemic equilibrium with respect to the timeτis also addressed.


2014 ◽  
Vol 07 (05) ◽  
pp. 1450054 ◽  
Author(s):  
S. Athithan ◽  
Mini Ghosh

This paper presents a nonlinear sex-structured mathematical model to study the spread of HIV/AIDS by considering transmission of disease by heterosexual contact. The epidemic threshold and equilibria for the model are determined, local stability and global stability of both the "Disease-Free Equilibrium" (DFE) and "Endemic Equilibrium" (EE) are discussed in detail. The DFE is shown to be locally and globally stable when the basic reproductive number ℛ0 is less than unity. We also prove that the EE is locally and globally asymptotically stable under some conditions. Finally, numerical simulations are reported to support the analytical findings.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Zijian Liu ◽  
Chenxue Yang

We study a two-patch impulsive migration periodicN-species Lotka-Volterra competitive system. Based on analysis method, inequality estimation, and Lyapunov function method, sufficient conditions for the permanence and existence of a unique globally stable positive periodic solution of the system are established. Some numerical examples are shown to verify our results and discuss the model further.


Sign in / Sign up

Export Citation Format

Share Document