Two-dimensional finite element model to study temperature distribution in peripheral regions of extended spherical human organs involving uniformly perfused tumors

2015 ◽  
Vol 08 (06) ◽  
pp. 1550074 ◽  
Author(s):  
Akshara Makrariya ◽  
Neeru Adlakha

Temperature as an indicator of tissue response is widely used in clinical applications. In view of above a problem of temperature distribution in peripheral regions of extended spherical organs of a human body like, human breast involving uniformly perfused tumor is investigated in this paper. The human breast is assumed to be spherical in shape with upper hemisphere projecting out from the trunk of the body and lower hemisphere is considered to be a part of the body core. The outer surface of the breast is assumed to be exposed to the environment from where the heat loss takes place by conduction, convection, radiation and evaporation. The heat transfer from core to the surface takes place by thermal conduction and blood perfusion. Also metabolic activity takes place at different rates in different layers of the breast. An elliptical-shaped tumor is assumed to be present in the dermis region of human breast. A finite element model is developed for a two-dimensional steady state case incorporating the important parameters like blood flow, metabolic activity and thermal conductivity. The triangular ring elements are employed to discretize the region. Appropriate boundary conditions are framed using biophysical conditions. The numerical results are used to study the effect of tumor on temperature distribution in the region.

2013 ◽  
Vol 06 (01) ◽  
pp. 1250065 ◽  
Author(s):  
AKSHARA MAKRARIYA ◽  
NEERU ADLAKHA

In the present study the thermal model of skin and subdermal tissues (SST) of human breast have been developed. The human breast is assumed to be spherical in shape with upper hemisphere projecting out from the trunk of the body and lower hemisphere is considered to be a part of the body core. The upper hemisphere represents the breast and its SST region is divided into three layers namely epidermis, dermis and subdermal tissues. The inner part of the breast represents the core/shell of the breast. The outer surface of the breast is assumed to be exposed to the environment from where the heat loss takes place by conduction, convection, radiation and evaporation. The heat transfer from core to the surface takes place by thermal conduction and blood perfusion. Also metabolic activity takes place at different rates in different SST layers of the breast. Boundary conditions have been framed on the basis of physical conditions. A finite element model has been developed for a two-dimensional steady state case.


2017 ◽  
Vol 10 (04) ◽  
pp. 1750053 ◽  
Author(s):  
Babita Kumari ◽  
Neeru Adlakha

The physical exercise imposes challenges on the human thermoregulatory system, as heat exchange between the body and environment is substantially impaired, which can lead to decrease in performance and increased risk of heat illness. In view of above a three-dimensional finite element model is proposed to study the effect of different intensities of physical exercise on temperature distribution in peripheral regions of human limbs under moderate climatic conditions. Human limb is assumed to have a cylindrical cross-section. The peripheral region of the human limb is divided into three natural components, namely epidermis, dermis and subdermal tissues. The model incorporates the effect of important physiological parameters like blood mass flow rate, metabolic heat generation, and thermal conductivity of the tissues. Appropriate boundary conditions have been framed based on the physical conditions of the problem. The model is transformed into the discretized variational form and finite element method (FEM) has been employed to obtain the solution. The numerical results have been used to obtain the temperature profiles in the region immediately after exercise for an unsteady state case. The thermal information generated from the model can be useful for developing protocols for improving performance of sportsmen, military persons and labor-intensive workers.


2011 ◽  
Vol 04 (02) ◽  
pp. 241-254 ◽  
Author(s):  
MAMTA AGRAWAL ◽  
NEERU ADLAKHA ◽  
K. R. PARDASANI

In this paper, a two-dimensional finite element model has been developed to study thermal disturbances in elliptical shaped human limbs involving uniformly perfused tumor. The model incorporates the effect of important physiological parameters like blood mass flow rate, self-controlled metabolic activity and thermal conductivity in dermal regions. For tumor regions the uncontrolled rate of metabolic activity and abnormal rate of blood flow have been incorporated. The outer surface of the limb is exposed to the environment where heat loss takes place via the conduction, convection, radiation and evaporation. Appropriate boundary conditions have been framed. The model has been simulated using MATLAB 7.5 to obtain numerical results.


Sign in / Sign up

Export Citation Format

Share Document