Stability of HIV-1 infection with saturated virus-target and infected-target incidences and CTL immune response

2017 ◽  
Vol 10 (05) ◽  
pp. 1750070 ◽  
Author(s):  
A. M. Ełaiw ◽  
A. A. Raezah ◽  
Khalid Hattaf

This paper studies the dynamical behavior of an HIV-1 infection model with saturated virus-target and infected-target incidences with Cytotoxic T Lymphocyte (CTL) immune response. The model is incorporated by two types of intracellular distributed time delays. The model generalizes all the existing HIV-1 infection models with cell-to-cell transmission presented in the literature by considering saturated incidence rate and the effect of CTL immune response. The existence and global stability of all steady states of the model are determined by two parameters, the basic reproduction number ([Formula: see text]) and the CTL immune response activation number ([Formula: see text]). By using suitable Lyapunov functionals, we show that if [Formula: see text], then the infection-free steady state [Formula: see text] is globally asymptotically stable; if [Formula: see text] [Formula: see text], then the CTL-inactivated infection steady state [Formula: see text] is globally asymptotically stable; if [Formula: see text], then the CTL-activated infection steady state [Formula: see text] is globally asymptotically stable. Using MATLAB we conduct some numerical simulations to confirm our results. The effect of the saturated incidence of the HIV-1 dynamics is shown.

2017 ◽  
Vol 10 (05) ◽  
pp. 1750062 ◽  
Author(s):  
Kalyan Manna

In this paper, a diffusive hepatitis B virus (HBV) infection model with a discrete time delay is presented and analyzed, where the spatial mobility of both intracellular capsid covered HBV DNA and HBV and the intracellular delay in the reproduction of infected hepatocytes are taken into account. We define the basic reproduction number [Formula: see text] that determines the dynamical behavior of the model. The local and global stability of the spatially homogeneous steady states are analyzed by using the linearization technique and the direct Lyapunov method, respectively. It is shown that the susceptible uninfected steady state is globally asymptotically stable whenever [Formula: see text] and is unstable whenever [Formula: see text]. Also, the infected steady state is globally asymptotically stable when [Formula: see text]. Finally, numerical simulations are carried out to illustrate the results obtained.


Author(s):  
Miled El Hajji ◽  
Abdelhamid Zaghdani ◽  
Sayed Sayari

Chikungunya fever, caused by Chikungunya virus (CHIKV) and transmitted to humans by infected Aedes mosquitoes, has posed a global threat in several countries. In this paper, we investigated a modified within-host Chikungunya virus (CHIKV) infection model with antibodies where two routes of infection are considered. In a first step, the basic reproduction number [Formula: see text] was calculated and the local and global stability analysis of the steady states is carried out using the local linearization and the Lyapunov method. It is proven that the CHIKV-free steady-state [Formula: see text] is globally asymptotically stable when [Formula: see text], and the infected steady-state [Formula: see text] is globally asymptotically stable when [Formula: see text]. In a second step, we applied an optimal strategy in order to optimize the infected compartment and to maximize the uninfected one. For this, we formulated a nonlinear optimal control problem. Existence of the optimal solution was discussed and characterized using some adjoint variables. Thus, an algorithm based on competitive Gauss–Seidel-like implicit difference method was applied in order to resolve the optimality system. The theoretical results are confirmed by some numerical simulations.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Yunfei Li ◽  
Rui Xu ◽  
Zhe Li ◽  
Shuxue Mao

A delayed HIV-1 infection model with CTL immune response is investigated. By using suitable Lyapunov functionals, it is proved that the infection-free equilibrium is globally asymptotically stable if the basic reproduction ratio for viral infection is less than or equal to unity; if the basic reproduction ratio for CTL immune response is less than or equal to unity and the basic reproduction ratio for viral infection is greater than unity, the CTL-inactivated infection equilibrium is globally asymptotically stable; if the basic reproduction ratio for CTL immune response is greater than unity, the CTL-activated infection equilibrium is globally asymptotically stable.


2013 ◽  
Vol 2013 ◽  
pp. 1-12
Author(s):  
Haibin Wang ◽  
Rui Xu

An HIV-1 infection model with latently infected cells and delayed immune response is investigated. By analyzing the corresponding characteristic equations, the local stability of each of feasible equilibria is established and the existence of Hopf bifurcations at the CTL-activated infection equilibrium is also studied. By means of suitable Lyapunov functionals and LaSalle’s invariance principle, it is proved that the infection-free equilibrium is globally asymptotically stable if the basic reproduction ratio for viral infectionR0≤1; if the basic reproduction ratio for viral infectionR0>1and the basic reproduction ratio for CTL immune responseR1≤1, the CTL-inactivated infection equilibrium is globally asymptotically stable. If the basic reproduction ratio for CTL immune responseR1>1, the global stability of the CTL-activated infection equilibrium is also derived when the time delayτ=0. Numerical simulations are carried out to illustrate the main results.


2017 ◽  
Vol 10 (05) ◽  
pp. 1750067 ◽  
Author(s):  
Ding-Yu Zou ◽  
Shi-Fei Wang ◽  
Xue-Zhi Li

In this paper, the global properties of a mathematical modeling of hepatitis C virus (HCV) with distributed time delays is studied. Lyapunov functionals are constructed to establish the global asymptotic stability of the uninfected and infected steady states. It is shown that if the basic reproduction number [Formula: see text] is less than unity, then the uninfected steady state is globally asymptotically stable. If the basic reproduction number [Formula: see text] is larger than unity, then the infected steady state is globally asymptotically stable.


2007 ◽  
Vol 10 (04) ◽  
pp. 495-503 ◽  
Author(s):  
XIA WANG ◽  
XINYU SONG

This article proposes a mathematical model which has been used to investigate the importance of lytic and non-lytic immune responses for the control of viral infections. By means of Lyapunov functions, the global properties of the model are obtained. The virus is cleared if the basic reproduction number R0 ≤ 1 and the virus persists in the host if R0 > 1. Furthermore, if R0 > 1 and other conditions hold, the immune-free equilibrium E0 is globally asymptotically stable. The equilibrium E1 exists and is globally asymptotically stale if the CTL immune response reproductive number R1 < 1 and the antibody immune response reproductive number R2 > 1. The equilibrium E2 exists and is globally asymptotically stable if R1 > 1 and R2 < 1. Finally, the endemic equilibrium E3 exists and is globally asymptotically stable if R1 > 1 and R2 > 1.


2014 ◽  
Vol 07 (05) ◽  
pp. 1450055 ◽  
Author(s):  
A. M. Elaiw ◽  
R. M. Abukwaik ◽  
E. O. Alzahrani

In this paper, we study the global properties of a human immunodeficiency virus (HIV) infection model with cytotoxic T lymphocytes (CTL) immune response. The model is a six-dimensional that describes the interaction of the HIV with two classes of target cells, CD4+ T cells and macrophages. The infection rate is given by saturation functional response. Two types of distributed time delays are incorporated into the model to describe the time needed for infection of target cell and virus replication. Using the method of Lyapunov functional, we have established that the global stability of the model is determined by two threshold numbers, the basic infection reproduction number R0 and the immune response activation number [Formula: see text]. We have proven that if R0 ≤ 1, then the uninfected steady state is globally asymptotically stable (GAS), if [Formula: see text], then the infected steady state without CTL immune response is GAS, and if [Formula: see text], then the infected steady state with CTL immune response is GAS.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Mustafa A. Obaid ◽  
A. M. Elaiw

Two virus infection models with antibody immune response and chronically infected cells are proposed and analyzed. Bilinear incidence rate is considered in the first model, while the incidence rate is given by a saturated functional response in the second one. One main feature of these models is that it includes both short-lived infected cells and chronically infected cells. The chronically infected cells produce much smaller amounts of virus than the short-lived infected cells and die at a much slower rate. Our mathematical analysis establishes that the global dynamics of the two models are determined by two threshold parametersR0andR1. By constructing Lyapunov functions and using LaSalle's invariance principle, we have established the global asymptotic stability of all steady states of the models. We have proven that, the uninfected steady state is globally asymptotically stable (GAS) ifR0<1, the infected steady state without antibody immune response exists and it is GAS ifR1<1<R0, and the infected steady state with antibody immune response exists and it is GAS ifR1>1. We check our theorems with numerical simulation in the end.


2021 ◽  
Vol 26 (1) ◽  
pp. 1-20
Author(s):  
Chenwei Song ◽  
Rui Xu

In this paper, we consider an improved Human T-lymphotropic virus type I (HTLV-I) infection model with the mitosis of CD4+ T cells and delayed cytotoxic T-lymphocyte (CTL) immune response by analyzing the distributions of roots of the corresponding characteristic equations, the local stability of the infection-free equilibrium, the immunity-inactivated equilibrium, and the immunity-activated equilibrium when the CTL immune delay is zero is established. And we discuss the existence of Hopf bifurcation at the immunity-activated equilibrium. We define the immune-inactivated reproduction ratio R0 and the immune-activated reproduction ratio R1. By using Lyapunov functionals and LaSalle’s invariance principle, it is shown that if R0 < 1, the infection-free equilibrium is globally asymptotically stable; if R1 < 1 < R0, the immunity-inactivated equilibrium is globally asymptotically stable; if R1 > 1, the immunity-activated equilibrium is globally asymptotically stable when the CTL immune delay is zero. Besides, uniform persistence is obtained when R1 > 1. Numerical simulations are carried out to illustrate the theoretical results.


2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
A. M. Elaiw ◽  
R. M. Abukwaik ◽  
E. O. Alzahrani

We study the global stability of a human immunodeficiency virus (HIV) infection model with Cytotoxic T Lymphocytes (CTL) immune response. The model describes the interaction of the HIV with two classes of target cells, CD4+T cells and macrophages. Two types of distributed time delays are incorporated into the model to describe the time needed for infection of target cell and virus replication. Using the method of Lyapunov functional, we have established that the global stability of the model is determined by two threshold numbers, the basic reproduction numberR0and the immune response reproduction numberR0∗. We have proven that, ifR0≤1, then the uninfected steady state is globally asymptotically stable (GAS), ifR0*≤1<R0, then the infected steady state without CTL immune response is GAS, and, ifR0*>1, then the infected steady state with CTL immune response is GAS.


Sign in / Sign up

Export Citation Format

Share Document