Different kinds of generalized rough sets based on neighborhoods with a medical application

Author(s):  
Mostafa K. El-Bably ◽  
Tareq M. Al-shami

Approximation space can be said to play a critical role in the accuracy of the set’s approximations. The idea of “approximation space” was introduced by Pawlak in 1982 as a core to describe information or knowledge induced from the relationships between objects of the universe. The main objective of this paper is to create new types of rough set models through the use of different neighborhoods generated by a binary relation. New approximations are proposed representing an extension of Pawlak’s rough sets and some of their generalizations, where the precision of these approximations is substantially improved. To elucidate the effectiveness of our approaches, we provide some comparisons between the proposed methods and the previous ones. Finally, we give a medical application of lung cancer disease as well as provide an algorithm which is tested on the basis of hypothetical data in order to compare it with current methods.

2021 ◽  
pp. 1-16
Author(s):  
M. K. El-Bably ◽  
E. A. Abo-Tabl

The present work proposes new styles of rough sets by using different neighborhoods which are made from a general binary relation. The proposed approximations represent a generalization to Pawlak’s rough sets and some of its generalizations, where the accuracy of these approximations is enhanced significantly. Comparisons are obtained between the methods proposed and the previous ones. Moreover, we extend the notion of “nano-topology”, which have introduced by Thivagar and Richard [49], to any binary relation. Besides, to demonstrate the importance of the suggested approaches for deciding on an effective tool for diagnosing lung cancer diseases, we include a medical application of lung cancer disease to identify the most risk factors for this disease and help the doctor in decision-making. Finally, two algorithms are given for decision-making problems. These algorithms are tested on hypothetical data for comparison with already existing methods.


Author(s):  
ROLLY INTAN ◽  
MASAO MUKAIDONO

In 1982, Pawlak proposed the concept of rough sets with a practical purpose of representing indiscernibility of elements or objects in the presence of information systems. Even if it is easy to analyze, the rough set theory built on a partition induced by equivalence relation may not provide a realistic view of relationships between elements in real-world applications. Here, coverings of, or nonequivalence relations on, the universe can be considered to represent a more realistic model instead of a partition in which a generalized model of rough sets was proposed. In this paper, first a weak fuzzy similarity relation is introduced as a more realistic relation in representing the relationship between two elements of data in real-world applications. Fuzzy conditional probability relation is considered as a concrete example of the weak fuzzy similarity relation. Coverings of the universe is provided by fuzzy conditional probability relations. Generalized concepts of rough approximations and rough membership functions are proposed and defined based on coverings of the universe. Such generalization is considered as a kind of fuzzy rough set. A more generalized fuzzy rough set approximation of a given fuzzy set is proposed and discussed as an alternative to provide interval-value fuzzy sets. Their properties are examined.


2011 ◽  
Vol 2011 ◽  
pp. 1-22 ◽  
Author(s):  
Zhaohao Wang ◽  
Lan Shu ◽  
Xiuyong Ding

Rough set theory is a powerful tool for dealing with uncertainty, granularity, and incompleteness of knowledge in information systems. This paper discusses five types of existing neighborhood-based generalized rough sets. The concepts of minimal neighborhood description and maximal neighborhood description of an element are defined, and by means of the two concepts, the properties and structures of the third and the fourth types of neighborhood-based rough sets are deeply explored. Furthermore, we systematically study the covering reduction of the third and the fourth types of neighborhood-based rough sets in terms of the two concepts. Finally, two open problems proposed by Yun et al. (2011) are solved.


2011 ◽  
Vol 2011 ◽  
pp. 1-10
Author(s):  
Sharmistha Bhattacharya (Halder) ◽  
Bijan Davvaz

Fuzzy sets, rough sets, and later on IF sets became useful mathematical tools for solving various decision making problems and data mining problems. Molodtsov introduced another concept soft set theory as a general frame work for reasoning about vague concepts. Since most of the data collected are either linguistic variable or consist of vague concepts so IF set and soft set help a lot in data mining problem. The aim of this paper is to introduce the concept of IF soft lower rough approximation and IF upper rough set approximation. Also, some properties of this set are studied, and also some problems of decision making are cited where this concept may help. Further research will be needed to apply this concept fully in the decision making and data mining problems.


2012 ◽  
Vol 548 ◽  
pp. 735-739
Author(s):  
Hong Mei Nie ◽  
Jia Qing Zhou

Rough set theory has been proposed by Pawlak as a useful tool for dealing with the vagueness and granularity in information systems. Classical rough set theory is based on equivalence relation. The covering rough sets are an improvement of Pawlak rough set to deal with complex practical problems which the latter one can not handle. This paper studies covering-based generalized rough sets. In this setting, we investigate common properties of classical lower and upper approximation operations hold for the covering-based lower and upper approximation operations and relationships among some type of covering rough sets.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2275
Author(s):  
Radwan Abu-Gdairi ◽  
Mostafa A. El-Gayar ◽  
Mostafa K. El-Bably ◽  
Kamel K. Fleifel

Rough set philosophy is a significant methodology in the knowledge discovery of databases. In the present paper, we suggest new sorts of rough set approximations using a multi-knowledge base; that is, a family of the finite number of general binary relations via different methods. The proposed methods depend basically on a new neighborhood (called basic-neighborhood). Generalized rough approximations (so-called, basic-approximations) represent a generalization to Pawlak’s rough sets and some of their extensions as confirming in the present paper. We prove that the accuracy of the suggested approximations is the best. Many comparisons between these approaches and the previous methods are introduced. The main goal of the suggested techniques was to study the multi-information systems in order to extend the application field of rough set models. Thus, two important real-life applications are discussed to illustrate the importance of these methods. We applied the introduced approximations in a set-valued ordered information system in order to be accurate tools for decision-making. To illustrate our methods, we applied them to find the key foods that are healthy in nutrition modeling, as well as in the medical field to make a good decision regarding the heart attacks problem.


2014 ◽  
Vol 1 (2) ◽  
pp. 49-61 ◽  
Author(s):  
Mary A. Geetha ◽  
D. P. Acharjya ◽  
N. Ch. S. N. Iyengar

The rough set philosophy is based on the concept that there is some information associated with each object of the universe. The set of all objects of the universe under consideration for particular discussion is considered as a universal set. So, there is a need to classify objects of the universe based on the indiscernibility relation (equivalence relation) among them. In the view of granular computing, rough set model is researched by single granulation. The granulation in general is carried out based on the equivalence relation defined over a universal set. It has been extended to multi-granular rough set model in which the set approximations are defined by using multiple equivalence relations on the universe simultaneously. But, in many real life scenarios, an information system establishes the relation with different universes. This gave the extension of multi-granulation rough set on single universal set to multi-granulation rough set on two universal sets. In this paper, we define multi-granulation rough set for two universal sets U and V. We study the algebraic properties that are interesting in the theory of multi-granular rough sets. This helps in describing and solving real life problems more accurately.


Author(s):  
Niladri Chatterjee ◽  
Aayush Singha Roy ◽  
Nidhika Yadav

The present work proposes an application of Soft Rough Set and its span for unsupervised keyword extraction. In recent times Soft Rough Sets are being applied in various domains, though none of its applications are in the area of keyword extraction. On the other hand, the concept of Rough Set based span has been developed for improved efficiency in the domain of extractive text summarization. In this work we amalgamate these two techniques, called Soft Rough Set based Span (SRS), to provide an effective solution for keyword extraction from texts. The universe for Soft Rough Set is taken to be a collection of words from the input texts. SRS provides an ideal platform for identifying the set of keywords from the input text which cannot always be defined clearly and unambiguously. The proposed technique uses greedy algorithm for computing spanning sets. The experimental results suggest that extraction of keywords using the proposed scheme gives consistent results across different domains. Also, it has been found to be more efficient in comparison with several existing unsupervised techniques.


Author(s):  
CHURN-JUNG LIAU

In this paper, we would like to present some logics with semantics based on rough set theory and related notions. These logics are mainly divided into two classes. One is the class of modal logics and the other is that of quantifier logics. For the former, the approximation space is based on a set of possible worlds, whereas in the latter, we consider the set of variable assignments as the universe of approximation. In addition to surveying some well-known results about the links between logics and rough set notions, we also develop some new applied logics inspired by rough set theory.


Author(s):  
Jianhua Dai ◽  
Debiao Huang ◽  
Huashi Su ◽  
Haowei Tian ◽  
Tian Yang

Covering rough set theory is an important generalization of traditional rough set theory. So far, the studies on covering generalized rough sets mainly focus on constructing different types of approximation operations. However, little attention has been paid to uncertainty measurement in covering cases. In this paper, a new kind of partial order is proposed for coverings which is used to evaluate the uncertainty measures. Consequently, we study uncertain measures like roughness measure, accuracy measure, entropy and granularity for covering rough set models which are defined by neighborhoods and friends. Some theoretical results are obtained and investigated.


Sign in / Sign up

Export Citation Format

Share Document