scholarly journals On the cardinality of a factor set in the symmetric group

2014 ◽  
Vol 07 (02) ◽  
pp. 1450027
Author(s):  
Krasimir Yordzhev

Let n be a positive integer, σ be an element of the symmetric group [Formula: see text] and let σ be a cycle of length n. The elements [Formula: see text] are σ-equivalent, if there are natural numbers k and l, such that σk α = βσl, which is the same as the condition to exist natural numbers k1 and l1, such that α = σk1 βσl1. In this work, we examine some properties of the so-defined equivalence relation. We build a finite oriented graph Γn with the help of which is described an algorithm for solving the combinatorial problem for finding the number of equivalence classes according to this relation.

1995 ◽  
Vol 1 (2) ◽  
pp. 189-201 ◽  
Author(s):  
Steffen Lempp ◽  
Manuel Lerman

The degrees of unsolvability were introduced in the ground-breaking papers of Post [20] and Kleene and Post [7] as an attempt to measure theinformation contentof sets of natural numbers. Kleene and Post were interested in the relative complexity of decision problems arising naturally in mathematics; in particular, they wished to know when a solution to one decision problem contained the information necessary to solve a second decision problem. As decision problems can be coded by sets of natural numbers, this question is equivalent to: Given a computer with access to an oracle which will answer membership questions about a setA, can a program (allowing questions to the oracle) be written which will correctly compute the answers to all membership questions about a setB? If the answer is yes, then we say thatBisTuring reducibletoAand writeB≤TA. We say thatB≡TAifB≤TAandA≤TB. ≡Tis an equivalence relation, and ≤Tinduces a partial ordering on the corresponding equivalence classes; the poset obtained in this way is called thedegrees of unsolvability, and elements of this poset are calleddegrees.Post was particularly interested in computability from sets which are partially generated by a computer, namely, those for which the elements of the set can be enumerated by a computer.


1983 ◽  
Vol 48 (3) ◽  
pp. 529-538 ◽  
Author(s):  
Claudio Bernardi ◽  
Andrea Sorbi

AbstractGiven two (positive) equivalence relations ~1, ~2 on the set ω of natural numbers, we say that ~1 is m-reducible to ~2 if there exists a total recursive function h such that for every x, y ∈ ω, we have x ~1y iff hx ~2hy. We prove that the equivalence relation induced in ω by a positive precomplete numeration is complete with respect to this reducibility (and, moreover, a “uniformity property” holds). This result allows us to state a classification theorem for positive equivalence relations (Theorem 2). We show that there exist nonisomorphic positive equivalence relations which are complete with respect to the above reducibility; in particular, we discuss the provable equivalence of a strong enough theory: this relation is complete with respect to reducibility but it does not correspond to a precomplete numeration.From this fact we deduce that an equivalence relation on ω can be strongly represented by a formula (see Definition 8) iff it is positive. At last, we interpret the situation from a topological point of view. Among other things, we generalize a result of Visser by showing that the topological space corresponding to a partition in e.i. sets is irreducible and we prove that the set of equivalence classes of true sentences is dense in the Lindenbaum algebra of the theory.


2012 ◽  
Vol 26 (25) ◽  
pp. 1246006
Author(s):  
H. DIEZ-MACHÍO ◽  
J. CLOTET ◽  
M. I. GARCÍA-PLANAS ◽  
M. D. MAGRET ◽  
M. E. MONTORO

We present a geometric approach to the study of singular switched linear systems, defining a Lie group action on the differentiable manifold consisting of the matrices defining their subsystems with orbits coinciding with equivalence classes under an equivalence relation which preserves reachability and derive miniversal (orthogonal) deformations of the system. We relate this with some new results on reachability of such systems.


10.37236/5629 ◽  
2015 ◽  
Vol 22 (4) ◽  
Author(s):  
Michael Albert ◽  
Mathilde Bouvel

The existence of apparently coincidental equalities (also called Wilf-equivalences) between the enumeration sequences or generating functions of various hereditary classes of combinatorial structures has attracted significant interest. We investigate such coincidences among non-crossing matchings and a variety of other Catalan structures including Dyck paths, 231-avoiding permutations and plane forests. In particular we consider principal subclasses defined by not containing an occurrence of a single given structure. An easily computed equivalence relation among structures is described such that if two structures are equivalent then the associated principal subclasses have the same enumeration sequence. We give an asymptotic estimate of the number of equivalence classes of this relation among structures of size $n$ and show that it is exponentially smaller than the $n^{th}$ Catalan number. In other words these "coincidental" equalities are in fact very common among principal subclasses. Our results also allow us to prove in a unified and bijective manner several known Wilf-equivalences from the literature.


2008 ◽  
Vol 78 (3) ◽  
pp. 431-436 ◽  
Author(s):  
XUE-GONG SUN ◽  
JIN-HUI FANG

AbstractErdős and Odlyzko proved that odd integers k such that k2n+1 is prime for some positive integer n have a positive lower density. In this paper, we characterize all arithmetic progressions in which natural numbers that can be expressed in the form (p−1)2−n (where p is a prime number) have a positive proportion. We also prove that an arithmetic progression consisting of odd numbers can be obtained from a covering system if and only if those integers in such a progression which can be expressed in the form (p−1)2−n have an asymptotic density of zero.


1985 ◽  
Vol 50 (2) ◽  
pp. 397-406 ◽  
Author(s):  
Franco Montagna ◽  
Andrea Sorbi

When dealing with axiomatic theories from a recursion-theoretic point of view, the notion of r.e. preordering naturally arises. We agree that an r.e. preorder is a pair = 〈P, ≤P〉 such that P is an r.e. subset of the set of natural numbers (denoted by ω), ≤P is a preordering on P and the set {〈;x, y〉: x ≤Py} is r.e.. Indeed, if is an axiomatic theory, the provable implication of yields a preordering on the class of (Gödel numbers of) formulas of .Of course, if ≤P is a preordering on P, then it yields an equivalence relation ~P on P, by simply letting x ~Py iff x ≤Py and y ≤Px. Hence, in the case of P = ω, any preordering yields an equivalence relation on ω and consequently a numeration in the sense of [4]. It is also clear that any equivalence relation on ω (hence any numeration) can be regarded as a preordering on ω. In view of this connection, we sometimes apply to the theory of preorders some of the concepts from the theory of numerations (see also Eršov [6]).Our main concern will be in applications of these concepts to logic, in particular as regards sufficiently strong axiomatic theories (essentially the ones in which recursive functions are representable). From this point of view it seems to be of some interest to study some remarkable prelattices and Boolean prealgebras which arise from such theories. It turns out that these structures enjoy some rather surprising lattice-theoretic and universal recursion-theoretic properties.After making our main definitions in §1, we examine universal recursion-theoretic properties of some r.e. prelattices in §2.


1989 ◽  
Vol 41 (5) ◽  
pp. 830-854 ◽  
Author(s):  
B. Banaschewski ◽  
A. Pultr

A natural approach to topology which emphasizes its geometric essence independent of the notion of points is given by the concept of frame (for instance [4], [8]). We consider this a good formalization of the intuitive perception of a space as given by the “places” of non-trivial extent with appropriate geometric relations between them. Viewed from this position, points are artefacts determined by collections of places which may in some sense by considered as collapsing or contracting; the precise meaning of the latter as well as possible notions of equivalence being largely arbitrary, one may indeed have different notions of point on the same “space”. Of course, the well-known notion of a point as a homomorphism into 2 evidently fits into this pattern by the familiar correspondence between these and the completely prime filters. For frames equipped with a diameter as considered in this paper, we introduce a natural alternative, the Cauchy points. These are the obvious counterparts, for metric locales, of equivalence classes of Cauchy sequences familiar from the classical description of completion of metric spaces: indeed they are decreasing sequences for which the diameters tend to zero, identified by a natural equivalence relation.


1958 ◽  
Vol 13 ◽  
pp. 135-156 ◽  
Author(s):  
Masahisa Adachi

In the papers [11] and [18] Rohlin and Thom have introduced an equivalence relation into the set of compact orientable (not necessarily connected) differentiable manifolds, which, roughly speaking, is described in the following manner: two differentiable manifolds are equivalent (cobordantes), when they together form the boundary of a bounded differentiable manifold. The equivalence classes can be added and multiplied in a natural way and form a graded algebra Ω relative to the addition, the multiplication and the dimension of manifolds. The precise structures of the groups of cobordism Ωk of dimension k are not known thoroughly. Thom [18] has determined the free part of Ω and also calculated explicitly Ωk for 0 ≦ k ≦ 7.


2016 ◽  
Vol 25 (14) ◽  
pp. 1650076 ◽  
Author(s):  
Timur Nasybullov

We construct the complete invariant for fused links. It is proved that the set of equivalence classes of [Formula: see text]-component fused links is in one-to-one correspondence with the set of elements of the abelization [Formula: see text] up to conjugation by elements from the symmetric group [Formula: see text].


Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1044 ◽  
Author(s):  
Jeong-Gon Lee ◽  
Kul Hur

We introduce the concepts of a bipolar fuzzy reflexive, symmetric, and transitive relation. We study bipolar fuzzy analogues of many results concerning relationships between ordinary reflexive, symmetric, and transitive relations. Next, we define the concepts of a bipolar fuzzy equivalence class and a bipolar fuzzy partition, and we prove that the set of all bipolar fuzzy equivalence classes is a bipolar fuzzy partition and that the bipolar fuzzy equivalence relation is induced by a bipolar fuzzy partition. Finally, we define an ( a , b ) -level set of a bipolar fuzzy relation and investigate some relationships between bipolar fuzzy relations and their ( a , b ) -level sets.


Sign in / Sign up

Export Citation Format

Share Document