On sums of squares of Fibonomial coefficients by q-calculus

2016 ◽  
Vol 09 (03) ◽  
pp. 1650062
Author(s):  
Emrah Kılıç ◽  
Aynur Yalçıner

We present some new kinds of sums of squares of Fibonomial coefficients with finite products of generalized Fibonacci and Lucas numbers as coefficients. As proof method, we will follow the method given in [E. Kılıç and H. Prodinger, Closed form evaluation of sums containing squares of Fibonomial coefficients, accepted in Math. Slovaca]. For this, first we translate everything into [Formula: see text]-notation, and then to use generating functions and Rothe’s identity from classical [Formula: see text]-calculus.

2016 ◽  
Vol 66 (3) ◽  
Author(s):  
Emrah Kiliç ◽  
Helmut Prodinger

AbstractWe give a systematic approach to compute certain sums of squares of Fibonomial coefficients with finite products of generalized Fibonacci and Lucas numbers as coefficients. The technique is to rewrite everything in terms of a variable


2020 ◽  
Vol 70 (3) ◽  
pp. 641-656
Author(s):  
Amira Khelifa ◽  
Yacine Halim ◽  
Abderrahmane Bouchair ◽  
Massaoud Berkal

AbstractIn this paper we give some theoretical explanations related to the representation for the general solution of the system of the higher-order rational difference equations$$\begin{array}{} \displaystyle x_{n+1} = \dfrac{1+2y_{n-k}}{3+y_{n-k}},\qquad y_{n+1} = \dfrac{1+2z_{n-k}}{3+z_{n-k}},\qquad z_{n+1} = \dfrac{1+2x_{n-k}}{3+x_{n-k}}, \end{array}$$where n, k∈ ℕ0, the initial values x−k, x−k+1, …, x0, y−k, y−k+1, …, y0, z−k, z−k+1, …, z1 and z0 are arbitrary real numbers do not equal −3. This system can be solved in a closed-form and we will see that the solutions are expressed using the famous Fibonacci and Lucas numbers.


1981 ◽  
Vol 90 (3) ◽  
pp. 385-387 ◽  
Author(s):  
B. G. S. Doman ◽  
J. K. Williams

The Fibonacci and Lucas polynomials Fn(z) and Ln(z) are denned. These reduce to the familiar Fibonacci and Lucas numbers when z = 1. The polynomials are shown to satisfy a second order linear difference equation. Generating functions are derived, and also various simple identities, and relations with hypergeometric functions, Gegenbauer and Chebyshev polynomials.


2010 ◽  
Vol 60 (6) ◽  
Author(s):  
Pavel Pražák ◽  
Pavel Trojovský

AbstractNew results about some sums s n(k, l) of products of the Lucas numbers, which are of similar type as the sums in [SEIBERT, J.—TROJOVSK Ý, P.: On multiple sums of products of Lucas numbers, J. Integer Seq. 10 (2007), Article 07.4.5], and sums σ(k) = $$ \sum\limits_{l = 0}^{\tfrac{{k - 1}} {2}} {(_l^k )F_k - 2l^S n(k,l)} $$ are derived. These sums are related to the numerator of generating function for the kth powers of the Fibonacci numbers. s n(k, l) and σ(k) are expressed as the sum of the binomial and the Fibonomial coefficients. Proofs of these formulas are based on a special inverse formulas.


Filomat ◽  
2020 ◽  
Vol 34 (8) ◽  
pp. 2655-2665
Author(s):  
Gospava Djordjevic ◽  
Snezana Djordjevic

In this paper we consider the generalized Fibonacci numbers Fn,m and the generalized Lucas numbers Ln,m. Also, we introduce new sequences of numbers An,m, Bn,m, Cn,m and Dn,m. Further, we find the generating functions and some recurrence relations for these sequences of numbers.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1334
Author(s):  
Rifat Battaloglu ◽  
Yilmaz Simsek

The main purpose of this paper is to give many new formulas involving the Fibonacci numbers, the golden ratio, the Lucas numbers, and other special numbers. By using generating functions for the special numbers with their functional equations method, we also give many new relations among the Fibonacci numbers, the Lucas numbers, the golden ratio, the Stirling numbers, and other special numbers. Moreover, some applications of the Fibonacci numbers and the golden ratio in chemistry are given.


1989 ◽  
Vol 03 (14) ◽  
pp. 1071-1085 ◽  
Author(s):  
L. A. BURSILL ◽  
GEORGE RYAN ◽  
XUDONG FAN ◽  
J. L. ROUSE ◽  
JULIN PENG ◽  
...  

Observations of the sunflower Helianthus tuberosus reveal the occurrence of both Fibonacci and Lucas numbers of visible spirals (parastichies). This species is multi-headed, allowing a quantitative study of the relative abundance of these two types of phyllotaxis. The florets follow a spiral arrangement. It is remarkable that the Lucas series occurred, almost invariably, in the first-flowering heads of individual plants. The occurrence of left-and right-handed chirality was found to be random, within experimental error, using an appropriate chirality convention. Quantitative crystallographic studies allow the average growth law to be derived (r = alτ−1; θ = 2πl/(τ + 1), where a is a constant, l is the seed cell number and τ is the golden mean [Formula: see text]). They also reveal departures from classical theoretical models of phyllotaxis, taking the form of persistent oscillations in both divergence angle and radius. The experimental results are discussed in terms of a new theoretical model for the close-packing of growing discs. Finally, a basis for synthesis of (inorganic) spiral lattice structures is proposed.


Sign in / Sign up

Export Citation Format

Share Document