INVESTIGATION ON ETHANOL AND PROPYLENE GLYCOL AS ENHANCERS FOR SKIN-ELECTRODE CONDUCTIVITY IN BIOELECTRICAL POTENTIAL MEASUREMENT

2009 ◽  
Vol 02 (04) ◽  
pp. 175-177 ◽  
Author(s):  
W. C. NG ◽  
M. H. NG ◽  
K. S. LEE ◽  
X. P. LI

In bioelectrical potential measurement with restricted skin-electrode contact area, such as in dense array EEG measurement where the electrolyte bridging effect1 is a major concern for signal reliability, an enhanced electrolyte solution is required for the skin-electrode impedance to reach the sufficiently low level within the minimum time interval. In this study, an electrolyte gel with its skin permeation ability enhanced by ethanol or propylene glycol has been investigated. The standard skin-electrode impedance measurement was carried out on the forehead in an area of 6 mm in diameter using standard Ag / AgCl EEG electrodes. The gel solutions with 0%, 7%, 18% and 28% of enhancers by volume are compared. The results show that both ethanol and propylene glycol reduce the permeation barrier of the stratum corneum so that ions in the electrolyte gel can penetrate more readily into the skin, enhancing the skin-electrode conductivity in reaching the steady value at a faster rate. It was further found that for the gel with higher percentage of ethanol, lower minimum skin-electrode impedance value was obtained. However, as the percentage of propylene glycol increased, it fails to attain low steady impedance values in the skin-electrode impedance measurements.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jinzhong Song ◽  
Tianshu Zhou ◽  
Zhonggang Liang ◽  
Ruoxi Liu ◽  
Jianping Guo ◽  
...  

Based on one simulated skin-electrode electrochemical interface, some electrochemical characteristics based on skin-electrode contact pressure (SECP) for dry biomedical electrodes were analysed and applied in this research. First, 14 electrochemical characteristics including 2 static impedance (SI) characteristics, 11 alternating current impedance (ACI) characteristics and one polarization voltage (PV), and 4 SECP characteristics were extracted in one electrochemical evaluation platform, and their correlation trends were statistically analysed. Second, dry biomedical electrode samples developed by the company and the laboratory, including textile electrodes, Apple watch, AMAZFIT rice health bracelet 1S, and stainless steel electrodes, were placed horizontally and vertically on the “skin” surface of the electrochemical evaluation platform, whose polarization voltages were quantitatively analysed. Third, electrocardiogram (ECG) collection circuits based on an impedance transformation (IT) circuit for textile electrodes were designed, and a wearable ECG acquisition device was designed, which could obtain complete ECG signals. Experimental results showed SECP characteristics for dry electrodes had good correlations with static impedance and ACI characteristics and the better correlation values among 2-10 Hz. In addition, polarization voltages in vertical state were smaller in horizontal state for dry biomedical electrodes, and polarization voltage of electrode pair (PVEP) values for Apple watch bottom was always smaller than ones for Apple watch crown and LMF-2 textile electrode. And the skin-electrode contact impedance of IT textile electrodes was less than the traditional textile electrodes.


2015 ◽  
Vol 51 (21) ◽  
pp. 1643-1645 ◽  
Author(s):  
Jeong Su Lee ◽  
Chung Min Han ◽  
Jee Hoon Kim ◽  
Kwang Suk Park

Sign in / Sign up

Export Citation Format

Share Document