SYNTHESIS AND FORMATION MECHANISM OF STRAIGHT CARBON MICROTUBES BY A SIMPLE IN SITU TEMPLATE APPROACH

2012 ◽  
Vol 05 (04) ◽  
pp. 1250050
Author(s):  
MINGTAO ZHENG ◽  
XIANGRONG LIU ◽  
CHENGLONG HE ◽  
YONG XIAO ◽  
BINGFU LEI ◽  
...  

Here we report a simple in situ template approach for the synthesis of uniformly-shaped straight carbon microtubes (SCMTs) under moderate conditions, in which zinc carbonate powder and glycol were used as starting materials. The morphology and microstructure of SCMTs were characterized by SEM, TEM, HRTEM, XRD and Raman spectrum. The length and diameter of SCMTs can be controlled by simply varying the concentration of zinc carbonate in glycol. Experimental results show that ZnO nanorods generated during the process act as an in situ template for SCMT formation. Owing to their large inner spacing, SCMTs may have potential applications in supporter materials for drugs, dyes, and catalysts, microreactors, and hydrogen or energy storage materials.

2021 ◽  
Vol 8 ◽  
Author(s):  
Lanting Lou ◽  
Min Xu ◽  
Xiulan Huai ◽  
Caifeng Huang ◽  
Zhangli Liu

Mil-101 (Cr) material is considered to be one of the most potential thermochemical energy storage materials in recent years. It has the advantages of a typical S-type water adsorption isotherm. Has low working temperature and large water adsorption amount. However, the adsorption properties of the material need to be improved under low water pressure. To improve the performance, the acidified MWCNTs were added before the hydrothermal reaction of mil-101 (Cr) materials to optimize the micropore structure. After the preparation, the new composite thermochemical energy storage materials were prepared by impregnation with a certain concentration of calcium chloride aqueous solution. The effects of multi-walled carbon nanotubes and calcium chloride on the physical and chemical properties of the materials were discussed. Through X-ray diffraction experiment, scanning electron microscope, microstructure analysis, nitrogen adsorption capacity test, water adsorption capacity test, and other means, the micro characteristics, pore structure, crystal morphology, and chemical composition of the materials were characterized, and the water adsorption performance of the materials was synthesized. The experimental results show that the addition of carbon nanotubes can improve the pore properties of the materials so that the porous organic skeleton can accommodate more calcium chloride particles. The composite materials with calcium chloride can provide excellent hydrophilicity and high water adsorption capacity. Also, the water absorption rate and adsorption-desorption cycle capacity of the material have been significantly improved. The experimental results show that when the mass fraction of calcium chloride reaches 30% when 90 mg acidified MWCNTs are added into every four chromium nitrate crystals, the hydrophilicity and adsorption capacity of the composite can reach a high equilibrium state. At the same time, the experimental yield of the material is high, the product is easy to obtain, the environmental friendliness is also reflected, so it is expected to become the adsorption heat pump thermochemical energy storage material with research potential.


2021 ◽  
Author(s):  
Tarun Parangi ◽  
Manish Kumar Mishra

With the increased attention on sustainable energy, a novel interest has been generated towards construction of energy storage materials and energy conversion devices at minimum environmental impact. Apart from the various potential applications of titanium dioxide (TiO2), a variety of TiO2 nanostructure (nanoparticles, nanorods, nanoneedles, nanowires, and nanotubes) are being studied as a promising materials in durable active battery materials. The specific features such as high safety, low cost, thermal and chemical stability, and moderate capacity of TiO2 nanomaterial made itself as a most interesting candidate for fulfilling the current demand and understanding the related challenges towards the preparation of effective energy storage system. Many more synthetic approaches have been adapted to design different nanostructures for improving the electronic conductivity of TiO2 by combining with other materials such as carbonaceous materials, conducting polymers, metal oxides etc. The combination can be done through incorporating and doping methods to synthesize TiO2-based anodic materials having more open channels and active sites for lithium and/or sodium ion transportation. The present chapter contained a broad literature and discussion on the synthetic approaches for TiO2-based anodic materials for enhancing the lithium ion batteries (LIBs) and sodium ion batteries (SIBs) performance. Based on lithium storage mechanism and role of anodic material, we could conclude on future exploitation development of titania and titania based materials as energy storage materials.


2017 ◽  
Vol 23 (S1) ◽  
pp. 1964-1965
Author(s):  
Raymond R. Unocic ◽  
Robert L. Sacci ◽  
Xiahan Sang ◽  
Kinga A. Unocic ◽  
Gabriel M. Veith ◽  
...  

2016 ◽  
Vol 12 (4) ◽  
pp. 5-10
Author(s):  
L.F. Kozin ◽  
◽  
S.V. Volkov ◽  
A.V. Sviatogor ◽  
B.I. Daniltsev ◽  
...  

2019 ◽  
Author(s):  
Karolina Matuszek ◽  
R. Vijayaraghavan ◽  
Craig Forsyth ◽  
Surianarayanan Mahadevan ◽  
Mega Kar ◽  
...  

Renewable energy has the ultimate capacity to resolve the environmental and scarcity challenges of the world’s energy supplies. However, both the utility of these sources and the economics of their implementation are strongly limited by their intermittent nature; inexpensive means of energy storage therefore needs to be part of the design. Distributed thermal energy storage is surprisingly underdeveloped in this context, in part due to the lack of advanced storage materials. Here, we describe a novel family of thermal energy storage materials based on pyrazolium cation, that operate in the 100-220°C temperature range, offering safe, inexpensive capacity, opening new pathways for high efficiency collection and storage of both solar-thermal energy, as well as excess wind power. We probe the molecular origins of the high thermal energy storage capacity of these ionic materials and demonstrate extended cycling that provides a basis for further scale up and development.


Sign in / Sign up

Export Citation Format

Share Document