Adaptive multilevel fuzzy-based authentication framework to mitigate Cache side channel attack in cloud computing

Author(s):  
Bharati Ainapure ◽  
Deven Shah ◽  
A. Ananda Rao

Cloud computing supports multitenancy to satisfy the users’ demands for accessing resources and simultaneously it increases revenue for cloud providers. Cloud providers adapt multitenancy by virtualizing the resources, like CPU, network interfaces, peripherals, hard drives and memory using hypervisor to fulfill the demand. In a virtualized environment, many virtual machines (VMs) can run on the same core with the help of the hypervisor by sharing the resources. The VMs running on the same core are the target for the malicious or abnormal attacks like side channel attacks. Among various side channel attacks in cloud computing, cache-based side channel attack is one that leaks private information of the users based on the shared resources. Here, as the shared resource is the cache, a process can utilize the cache usage of another by cache contention. Cache sharing provides a way for the attackers to gain considerable information so that the key used for encryption can be inferred. Discovering this side channel attack is a challenging task. This requires identification of a feature that influences the attack. Even though there are various techniques available in the literature to mitigate such attacks, an effective solution to reduce the cache-based side channel attack is still an issue. Therefore, a novel fuzzy rule-based mechanism is integrated to detect the cache side channel attackers by monitoring the cache data access (CDA). The factor that determines the attack is CDA in a log file created by the framework during authorization. The proposed framework also utilizes certain security properties including ECC and hashing for the privacy preservation and the decision is made with the aid of a fuzzy logic system.

Author(s):  
Ramanujam Elangovan ◽  
Prianga M.

Cloud computing is used for storing and managing information using the remote servers, which is hosted on the internet instead of storing it in a normal server or personal computer. The main purpose of why most of the companies use the cloud for storing and managing data is to not have to pay money for storing data. The main aim is to allow users to benefit from all technologies. Virtualization is considered to be the main technology of cloud computing. Several privacy concerns are caused by the cloud because the service provider can access the data at any time. Cloud providers can also share the information for the purpose of law and order. The information gathered from the physical implementation is called a side channel attack. Some technical knowledge is required for side channel attacks and these attacks are based on statistical methods. It works by monitoring the security critical operations. The side channel attack is based on the information which is leaking and the information which is kept secret.


2021 ◽  
Vol 13 (6) ◽  
pp. 146
Author(s):  
Somdip Dey ◽  
Amit Kumar Singh ◽  
Klaus McDonald-Maier

Side-channel attacks remain a challenge to information flow control and security in mobile edge devices till this date. One such important security flaw could be exploited through temperature side-channel attacks, where heat dissipation and propagation from the processing cores are observed over time in order to deduce security flaws. In this paper, we study how computer vision-based convolutional neural networks (CNNs) could be used to exploit temperature (thermal) side-channel attack on different Linux governors in mobile edge device utilizing multi-processor system-on-chip (MPSoC). We also designed a power- and memory-efficient CNN model that is capable of performing thermal side-channel attack on the MPSoC and can be used by industry practitioners and academics as a benchmark to design methodologies to secure against such an attack in MPSoC.


2019 ◽  
Vol 20 (5) ◽  
pp. 731-748 ◽  
Author(s):  
Chao Yang ◽  
Yun-fei Guo ◽  
Hong-chao Hu ◽  
Ya-wen Wang ◽  
Qing Tong ◽  
...  

2014 ◽  
Vol 1044-1045 ◽  
pp. 1498-1502 ◽  
Author(s):  
Hong Sheng Wang ◽  
Dao Gang Ji ◽  
Yang Zhang ◽  
Kai Yan Chen ◽  
Kai Song

Cipher chips, such as microprocessors, are playing the important role in most cryptosystems, and implementing many public cryptographic algorithms. However, Side channel attacks pose serious threats to Cipher chips. Optical Side channel attack is a new kind of method against cipher chips. Two methods are presented in this paper, which shows how to implement optical fault injection attacks against RSA and AES algorithms running on AT89C52 microchip, and demonstrates how to exploit secret information under attack.


2015 ◽  
Vol 119 (13) ◽  
pp. 14-17
Author(s):  
D. Pratiba ◽  
G.Shobha G.Shobha ◽  
Sonali Tandon ◽  
Srushti S B ◽  
Vartika Vartika

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Ji-Ming Chen ◽  
Shi Chen ◽  
Xiang Wang ◽  
Lin Lin ◽  
Li Wang

With the rapid development of Internet of Things technology, a large amount of user information needs to be uploaded to the cloud server for computing and storage. Side-channel attacks steal the private information of other virtual machines by coresident virtual machines to bring huge security threats to edge computing. Virtual machine migration technology is currently the main way to defend against side-channel attacks. VM migration can effectively prevent attackers from realizing coresident virtual machines, thereby ensuring data security and privacy protection of edge computing based on the Internet of Things. This paper considers the relevance between application services and proposes a VM migration strategy based on service correlation. This strategy defines service relevance factors to quantify the degree of service relevance, build VM migration groups through service relevance factors, and effectively reduce communication overhead between servers during migration, design and implement the VM memory migration based on the post-copy method, effectively reduce the occurrence of page fault interruption, and improve the efficiency of VM migration.


2020 ◽  
Author(s):  
Somdip Dey ◽  
Amit Kumar ◽  
Klaus D. Mcdonald-Maier

<div><div><div><p>Side-channel attacks remain a challenge to information flow control and security in mobile edge devices till this date. One such important security flaw could be exploited through temperature side-channel attacks, where heat dissipation and propagation from the processing cores are observed over time in order to deduce security flaws. In this brief, we study how computer vision based convolutional neural networks (CNNs) could be used to exploit temperature (thermal) side-channel attack on different Linux governors in mobile edge device utilizing multi- processor system-on-chip (MPSoC). We also designed a power- and memory-efficient CNN model that is capable of performing thermal side-channel attack on the MPSoC and can be used by industry practitioners and academics as a benchmark to design methodologies to secure against such an attack in MPSoC.</p></div></div></div>


Sign in / Sign up

Export Citation Format

Share Document