NUMERICAL INVESTIGATION OF FILM DISTRIBUTION IN HORIZONTAL-TUBE FALLING FILM EVAPORATOR

2011 ◽  
Vol 19 (03) ◽  
pp. 177-183 ◽  
Author(s):  
JIN-BO CHEN ◽  
QING-GANG QIU

The technique of horizontal-tube falling film has been used in the cooling and heating industries such as refrigeration systems, heating systems and ocean thermal energy conversion systems. The comprehensive performance of evaporator is directly affected by the film distribution characteristics outside tubes. In this paper, numerical investigation was performed to predict the film characteristics outside the tubes in horizontal-tube falling film evaporator. The effects of liquid flow rate, tube diameter and the circular degree of tube on the film thickness were presented. The numerical simulation results were compared with that of the empirical equations for calculating the falling film thickness, and agreements between them were reasonable. Numerical simulation results show that, at the fixed fluid flow density, the liquid film is thicker on the upper and lower tube and the thinnest liquid film appears at angle of about 120°. The results also indicate that, when the fluid flow density decreases to a certain value, the local dryout spot on the surface of the tube would occur. In addition, the film thickness decreases with the increases of the tube diameter at the fixed fluid flow density.

2014 ◽  
Vol 487 ◽  
pp. 408-412
Author(s):  
Qi Guo Sun ◽  
Ali Cai ◽  
Zheng Hui Zhou ◽  
Zhi Hong Li ◽  
Xiong Shi Wang

Fluctuation characteristics of the pressure drop distribution and liquid film distribution along a pipe of the oil-air annular flow in oil-air lubrication system are calculated respectively introducing Chisholm constant c base on the Chisholm theory and simulated by Fluent in this paper. The results show that the theoretical calculation results of the pressure drop and liquid film agree qualitatively with the simulation results, and the fluctuation characteristics of the pressure drop and liquid film thickness are augmented respectively when the air velocity increases. These conclusions will do favors for predicting and controlling the lubricant in the oil-air lubrication system.


2018 ◽  
Vol 13 (4) ◽  
pp. 424-431 ◽  
Author(s):  
Xiaocui Zhang ◽  
Chuiju Meng ◽  
Qinggang Qiu ◽  
Shenglin Quan ◽  
Shengqiang Shen

2014 ◽  
Vol 974 ◽  
pp. 220-224
Author(s):  
Karim Bourouni ◽  
Ali L. Taee

This paper proposes the improvement of design and manufacturing of Falling Film Horizontal Tube Evaporators (FFHTE) through optimizing different parameters such as tubes pitch, tubes diameter and material and liquid film flow rate. These design and operational parameters have a significant influence on the hydrodynamic of the liquid film (eg: wetability of the tubes, scale deposition, heat transfer coefficient, etc.). Due to the complexity of the liquid film flow around the horizontal tube bundle, the experimental approach is preferred than modeling because it gives a better understanding of the phenomena occurring in the heat exchanger. In this paper one experiment was carried out to investigate liquid film flow around a single horizontal tube. A particular attention was taken for the measurement of liquid film thickness around the tube using a novel optical technique based on light reflection. The influence of the tubes pitch, tube diameter, height of the liquid distribution system and the liquid mass flow on the transitions between falling-film modes and film thickness is investigated and the results are compared to other data obtained from the literature. It was found that tubes wetability and heat transfer increased with increasing the vertical tube pitch. To account for fouling and heat transfer performance, a tube spacing value of 1.3 was recommended.


2014 ◽  
Vol 887-888 ◽  
pp. 743-748 ◽  
Author(s):  
Qing Xiao Zhou ◽  
Chao Yang Wang ◽  
Zhi Bing Fu ◽  
Yong Jian Tang

There exist angular offset and eccentricity between target and substrate in most practical multi-target magnetron sputtering systems, which should be seriously considered when we calculate the film distribution. This simulation results suggested that excellent thickness uniformity can be obtained when increased the substrate-target distance, angular offset, and eccentricity, but decreased the film thickness simultaneously. However, superior uniformity films without reducing the thickness remarkably can also obtained when the geometry configuration are proper configured.


Sign in / Sign up

Export Citation Format

Share Document