MODELING AND VERIFICATION OF HEAT AND MOISTURE TRANSFER IN AN ENTHALPY EXCHANGER MADE OF PAPER MEMBRANE

2012 ◽  
Vol 20 (03) ◽  
pp. 1250015 ◽  
Author(s):  
EUL-JONG LEE ◽  
JUNG-PYO LEE ◽  
HYUN-MIN SIM ◽  
NAE-HYUN KIM

In this study, heat and moisture transfer model of an enthalpy exchanger is proposed. With separately measured sorption constant and diffusion coefficient, the model predicts the heat and moisture transfer effectiveness of an enthalpy exchanger. Two sample enthalpy exchangers were tested at a KS condition to verify the model. The model predicts the heat transfer effectiveness within 4%, and the moisture transfer effectiveness within 10%. Pressure drop is predicted within 6%. The spacer fin efficiency for heat transfer was 0.11 to 0.13. The fin efficiency for moisture transfer, however, was negligibly small. For heat transfer, the conduction resistance to total thermal resistance was less than 1%. For moisture transfer, however, membrane resistance was dominant to convective moisture transfer resistance.

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4180
Author(s):  
Joowook Kim ◽  
Michael Brandemuehl

Several building energy simulation programs have been developed to evaluate the indoor conditions and energy performance of buildings. As a fundamental component of heating, ventilating, and air conditioning loads, each building energy modeling tool calculates the heat and moisture exchange among the outdoor environment, building envelope, and indoor environments. This paper presents a simplified heat and moisture transfer model of the building envelope, and case studies for building performance obtained by different heat and moisture transfer models are conducted to investigate the contribution of the proposed steady-state moisture flux (SSMF) method. For the analysis, three representative humid locations in the United States are considered: Miami, Atlanta, and Chicago. The results show that the SSMF model effectively complements the latent heat transfer calculation in conduction transfer function (CTF) and effective moisture penetration depth (EMPD) models during the cooling season. In addition, it is found that the ceiling part of a building largely constitutes the latent heat generated by the SSMF model.


Author(s):  
Michael P. Deru ◽  
Allan T. Kirkpatrick

Abstract Ground-heat transfer is tightly coupled with soil-moisture transfer. The coupling is threefold: heat is transferred by thermal conduction and by moisture transfer; the thermal properties of soil are strong functions of the moisture content; and moisture phase change includes latent heat effects and changes in thermal and hydraulic properties. A heat and moisture transfer model was developed to study the ground-coupled heat and moisture transfer from buildings. The model also includes detailed considerations of the atmospheric boundary conditions, including precipitation. Solutions for the soil temperature distribution are obtained using a finite element procedure. The model compared well with the seasonal variation of measured ground temperatures.


2001 ◽  
Vol 124 (1) ◽  
pp. 10-16 ◽  
Author(s):  
Michael P. Deru ◽  
Allan T. Kirkpatrick

Ground-heat transfer is tightly coupled with soil-moisture transfer. The coupling is threefold: heat is transferred by thermal conduction and by moisture transfer; the thermal properties of soil are strong functions of the moisture content; and moisture phase change includes latent heat effects and changes in thermal and hydraulic properties. A heat and moisture transfer model was developed to study the ground-coupled heat and moisture transfer from buildings. The model also includes detailed considerations of the atmospheric boundary conditions, including precipitation. Solutions for the soil temperature distribution are obtained using a finite element procedure. The model compared well with the seasonal variation of measured ground temperatures.


2009 ◽  
Vol 23 (03) ◽  
pp. 501-504 ◽  
Author(s):  
FENGZHI LI

In recent years, the use of phase change materials (PCM) to improve heat and moisture transfer properties of clothing has gained considerable attention. The PCM distribution in the clothing impacts heat and moisture transfer properties of the clothing significantly. For describing the mechanisms of heat and moisture transfer in clothing with PCM and investigating the effect of the PCM distribution, a new dynamic model of coupled heat and moisture transfer in porous textiles with PCM was developed. The effect of water content on physical parameters of textiles and heat transfer with phase change in the PCM microcapsules were considered in the model. Meanwhile, the numerical predictions were compared with experimental data, and good agreement was observed between the two, indicating that the model was satisfactory. Also the effects of the PCM distribution on heat transfer in the textiles-PCM microcapsule composites were investigated by using the model.


2018 ◽  
Vol 89 (15) ◽  
pp. 3089-3097
Author(s):  
Miao Qian ◽  
Jinghan Wang ◽  
Zhong Xiang ◽  
Zhewei Zhao ◽  
Xudong Hu

To investigate the drying characteristics of thin cotton fabric for reducing the energy consumption during the heat setting process, a two-dimensional heat and moisture transfer model considering lateral heat and moisture transmission under the impingement drying condition was developed in this study. The curves of the variation in fabric temperature and moisture content over time were obtained and the results indicate that the drying rate increases with the decrease in the moisture content in the fabric. In addition, non-uniform distributions of temperature and moisture on the fabric over time were obtained. The drying time per unit area on the fabric was found to increase with time. Further, experiments were conducted to test the heat and moisture transfer performance of the fabric, and the experimental results agree reasonably well with the calculations.


Sign in / Sign up

Export Citation Format

Share Document