scholarly journals LARGE-SCALE EMISSION IN FRI JETS

2012 ◽  
Vol 08 ◽  
pp. 190-195
Author(s):  
POL BORDAS ◽  
VALENTÍ BOSCH-RAMON ◽  
MANEL PERUCHO

The termination structures of the jets of Fanaroff & Riley (FR) galaxies are observed to produce extended non-thermal emission in a wide frequency range. The study of these structures can provide valuable insights on the conditions for particle acceleration and radiation at the shock fronts. We have studied the thermal and non-thermal emission that can be expected from the jet termination regions of Fanaroff & Riley type I sources. The broadband emssion from these galaxies has been recently extended to include the high-energy gamma-ray domain, owing to the Fermi detection of Cen A lobes. Exploring the physics behind the jet/medium interactions in FRI can provide valuable insights on the conditions for particle acceleration and radiation in the jet termination shocks. Making use of the results of a fully relativistic numerical simulation code of the evolution of a FRI jet we model the expected radiative output and predict spectra and lightcurves of both thermal and non-thermal emission at different source ages.

1994 ◽  
Vol 159 ◽  
pp. 39-48
Author(s):  
J. D. Kurfess

The principal results on active galactic nuclei from the Phase 1 observations by the COMPTON Gamma Ray Observatory are presented. These include the detection of a new class of high-energy gamma ray sources by the EGRET instrument and extensive observations of Seyfert galaxies in low-energy gamma rays by OSSE. The identified EGRET sources are associated with core-dominated radio loud objects, OVV's and BL Lacs. EGRET has not detected any Seyfert galaxies. OSSE observes a thermal-like spectrum from NGC 4151, and the low-energy gamma ray spectra of other Seyferts are significantly softer than the spectra below 50 keV, suggesting that a thermal emission mechanism is characteristic of these objects. OSSE has not detected any positron annihilation radiation from any Seyfert, and neither OSSE nor COMPTEL have detected an MeV excess from these sources.


2007 ◽  
Vol 2007 (04) ◽  
pp. 013-013 ◽  
Author(s):  
A Cuoco ◽  
S Hannestad ◽  
T Haugbølle ◽  
G Miele ◽  
P D Serpico ◽  
...  

2009 ◽  
Vol 18 (10) ◽  
pp. 1583-1586
Author(s):  
MARTIN LEMOINE

This paper discusses the correlation reported in 2008 by the Pierre Auger Observatory (PAO) of the arrival directions of the highest energy cosmic rays with active galactic nuclei (AGN). It is argued that these correlating AGN do not have the power required to be the sources of ultra-high energy protons. This current PAO dataset is further shown to disfavor giant radio-galaxies (both Fanaroff–Riley type I and II) as sources of ultra-high energy protons. The current data thus likely point to the local large scale structure, in which the actual sources of ultra-high energy cosmic rays camouflage. Finally, it is shown that the last gamma-ray burst in Centaurus A could explain, through rescattering on the Cen A lobes, the apparent cluster of events in this direction.


1994 ◽  
Author(s):  
V. V. Akimov ◽  
N. G. Leikov ◽  
A. V. Belov ◽  
I. M. Chertok ◽  
V. G. Kurt ◽  
...  

2019 ◽  
Vol 490 (3) ◽  
pp. 3691-3704
Author(s):  
L Delgado ◽  
M Hernanz

ABSTRACT In recent years, several nova explosions have been detected by Fermi/LAT at E > 100 MeV, mainly early after the explosion and for a short period of time. The first evidence of particle acceleration in novae was found in the 2006 eruption of RS Oph to explain the faster than expected deceleration of the blast wave. As a consequence, emission of high-energy gamma-rays mainly from neutral pion decay and inverse Compton scattering is expected. We aim to understand the early shock evolution, when acceleration of particles can take place, in nova explosions. To achieve this goal, we perform a multiwavelength study of the 2014 outburst of V745 Sco, a symbiotic recurrent nova similar to RS Oph. The analysis of early Swift/XRT observations, simultaneous to the tentative Fermi detection, is combined with Chandra and NuStar data, to get a global picture of the nova ejecta and the red giant wind evolution. Early radio and IR data are also compiled, providing information about the forward shock velocity and its magnetic field. The comparison with the plasma properties of RS Oph shows striking similarities, such as the skipping of the adiabatic phase occurring in supernova remnants, a hint of particle acceleration. The multiwavelength study of V745 Sco provides new insights into the evolution of the hot plasma in novae and its interaction with the circumstellar material, a powerful tool to understand the nature of the high-energy gamma-ray emission from symbiotic recurrent novae.


2018 ◽  
Vol 612 ◽  
pp. A38 ◽  
Author(s):  
P. Martin ◽  
G. Dubus ◽  
P. Jean ◽  
V. Tatischeff ◽  
C. Dosne

Context. Gamma-ray emission at energies ≥100 MeV has been detected from nine novae using the Fermi Large Area Telescope (LAT), and can be explained by particle acceleration at shocks in these systems. Eight out of these nine objects are classical novae in which interaction of the ejecta with a tenuous circumbinary material is not expected to generate detectable gamma-ray emission. Aim. We examine whether particle acceleration at internal shocks can account for the gamma-ray emission from these novae. The shocks result from the interaction of a fast wind radiatively-driven by nuclear burning on the white dwarf with material ejected in the initial runaway stage of the nova outburst. Methods. We present a one-dimensional model for the dynamics of a forward and reverse shock system in a nova ejecta, and for the associated time-dependent particle acceleration and high-energy gamma-ray emission. Non-thermal proton and electron spectra are calculated by solving a time-dependent transport equation for particle injection, acceleration, losses, and escape from the shock region. The predicted emission is compared to LAT observations of V407 Cyg, V1324 Sco, V959 Mon, V339 Del, V1369 Cen, and V5668 Sgr. Results. The ≥100 MeV gamma-ray emission arises predominantly from particles accelerated up to ~100 GeV at the reverse shock and undergoing hadronic interactions in the dense cooling layer downstream of the shock. The emission rises within days after the onset of the wind, quickly reaches a maximum, and its subsequent decrease reflects mostly the time evolution of the wind properties. Comparison to gamma-ray data points to a typical scenario where an ejecta of mass 10−5–10−4 M⊙ expands in a homologous way with a maximum velocity of 1000–2000 km s−1, followed within a day by a wind with a velocity <2000 km s−1 and a mass-loss rate of 10−4–10−3 M⊙ yr−1 declining over a time scale of a few days. Because of the large uncertainties in the measurements, many parameters of the problem are degenerate and/or poorly constrained except for the wind velocity, the relatively low values of which result in the majority of best-fit models having gamma-ray spectra with a high-energy turnover below ~10 GeV. Our typical model is able to account for the main features in the observations of the recent gamma-ray nova ASASSN-16ma. Conclusions. The internal shock model can account for the gamma-ray emission of the novae detected by Fermi LAT. Gamma-ray observations hold potential for probing the mechanism of mass ejection in novae, but should be combined to diagnostics of the thermal emission at lower energies to be more constraining.


Sign in / Sign up

Export Citation Format

Share Document