scholarly journals Beam Polarization at the ILC: Physics Case and Realization

2016 ◽  
Vol 40 ◽  
pp. 1660003 ◽  
Author(s):  
Annika Vauth ◽  
Jenny List

The International Linear Collider (ILC) is a proposed [Formula: see text] collider, focused on precision measurement of the Standard Model and new physics beyond. Polarized beams are a key element of the ILC physics program. The physics studies are accompanied by an extensive R&D program for the creation of the polarized beams and the measurement of their polarization. This contribution will review the advantages of using beam polarization and its technical aspects and realization, such as the creation of polarized beams and the measurement of the polarization.

2021 ◽  
Vol 81 (2) ◽  
Author(s):  
Hieu Minh Tran ◽  
Yoshimasa Kurihara

AbstractThe deviation between the prediction based on the standard model and the measurement of the muon $$g{-}2$$ g - 2 is currently at $$3{-}4 \sigma $$ 3 - 4 σ . If this discrepancy is attributable to new physics, it is expected that the new contributions to the tau $$g{-}2$$ g - 2 even larger than those of muon due to its large mass. However, it is much more difficult to directly measure the tau $$g{-}2$$ g - 2 because of its short lifetime. In this report, we consider the effect of the tau $$g{-}2$$ g - 2 at $$e^-e^+$$ e - e + colliders using a model independent approach. Using the tau pair production channel at the Large Electron Position Collider (LEP), we have determined the allowed range for the new physics contribution of the tau $$g{-}2$$ g - 2 assuming a q-square-dependence ansatz for the magnetic form factor. We also investigated the prospect at future $$e^+e^-$$ e + e - colliders, such as International Linear Collider, the Compact Linear Collider, the Future Circular $$e^+e^-$$ e + e - Collider, and Circular Electron Positron Collider, and determined the expected allowed range for the new physics contribution to the tau anomalous magnetic moment. The best limits are about $$4{-}5$$ 4 - 5 times more severe than the LEP one due to the beam polarization and the high luminosities at future colliders.


2019 ◽  
Vol 218 ◽  
pp. 07003
Author(s):  
Chang-Zheng Yuan

Belle II experiment at the SuperKEKB collider is a major upgrade of the Belle experiment at the KEKB asymmetric e+e− collider at the KEK. The experiment will focus on the search for new physics beyond the standard model via high precision measurement of heavy flavor decays and search for rare signals. In this talk, we present the status of the SuperKEKB collider and the Belle II detector.


Author(s):  
Dan Yu ◽  
Manqi Ruan ◽  
Vincent Boudry ◽  
Henri Videau ◽  
Jean-Claude Brient ◽  
...  

AbstractThe Circular Electron Positron Collider and the International Linear Collider are two electron-positron Higgs factories. They are designed to operate at a center-of-mass energy of 240 and 250 GeV and accumulate 5.6 and 2 $$ab^{-1}$$ab-1 of integrated luminosity. This paper estimates their performance on the $$H \rightarrow \tau ^{+}\tau ^{-}$$H→τ+τ- benchmark measurement. Using the full simulation analysis, the CEPC is expected to measure the signal strength to a relative accuracy of 0.8%. Extrapolating to the ILC setup, we conclude the ILC can reach a relative accuracy of 1.1% or 1.2%, corresponding to two benchmark beam polarization setups. The physics requirement on the mass resolution of the Higgs boson with hadronic decay final states is also discussed, showing that the CEPC baseline design and reconstruction fulfill the accuracy requirement of the $$H\rightarrow \tau ^{+}\tau ^{-}$$H→τ+τ- signal strength.


2005 ◽  
Vol 20 (22) ◽  
pp. 5287-5296 ◽  
Author(s):  
DAVID J. MILLER

The International Linear Collider has a rich physics programme, whatever lies beyond the standard model. Accurate measurement of the top quark mass is needed to constrain the model or its extensions. If there is a light Higgs boson the LHC should see it, but the ILC will pin down its characteristics and test them against model predictions. If Supersymmetric particles appear the ILC will measure a complementary set of them to those seen at the LHC, and may allow extrapolation to the Grand Unified scale. And if a strong electroweak sector is indicated the ILC will be sensitive to the presence of new structures in difermion and diboson systems up to higher masses than the direct search range of the LHC. Beyond the LHC and ILC there could be need for a multi TeV lepton collider.


2006 ◽  
Vol 21 (27) ◽  
pp. 5381-5403 ◽  
Author(s):  
Ian Shipsey

The role of charm in testing the Standard Model description of quark mixing and CP violation through measurements of lifetimes, decay constants and semileptonic form factors is reviewed. Together with Lattice QCD, charm has the potential this decade to maximize the sensitivity of the entire flavor physics program to new physics and pave the way for understanding physics beyond the Standard Model at the LHC in the coming decade. The status of indirect searches for physics beyond the Standard Model through charm mixing, CP-violation and rare decays is also reported.


2011 ◽  
Vol 84 (11) ◽  
Author(s):  
Masaki Asano ◽  
Tomoyuki Saito ◽  
Taikan Suehara ◽  
Keisuke Fujii ◽  
R. S. Hundi ◽  
...  

2019 ◽  
Vol 79 (10) ◽  
Author(s):  
Shuichiro Funatsu

Abstract The signals of the $$SO(5)\times U(1)$$SO(5)×U(1) gauge-Higgs unification model at the International Linear Collider are studied. In this model, Kaluza–Klein modes of the neutral gauge bosons affect fermion pair productions. The deviations of the forward–backward asymmetries of the $$e^+e^-\rightarrow \bar{b}b$$e+e-→b¯b, $$\bar{t}t$$t¯t processes from the standard model predictions are clearly seen by using polarised beams. The deviations of these values are predicted for two cases, the bulk mass parameters of quarks are positive and negative case.


Author(s):  
G. Moortgat-Pick ◽  
A. Bartl ◽  
K. Hidaka ◽  
T. Kernreiter ◽  
H. Liivat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document