INTERLAYER COUPLING AND MAGNETIC ANISOTROPY AS KEY FACTORS FOR CREATION OF HYSTERESIS-LESS SPIN VALVES

SPIN ◽  
2014 ◽  
Vol 04 (01) ◽  
pp. 1440001 ◽  
Author(s):  
V. V. USTINOV ◽  
M. A. MILYAEV ◽  
L. I. NAUMOVA

The dependence of the free layer coercivity on the applied magnetic field (MF) deviation from the main anisotropy directions (free layer easy axis (EA) and pinning direction (PD)) and on 〈111〉 texture strength have been studied on [ Ta , ( Ni 80 Fe 20)60 Cr 40]/ Ni 80 Fe 20/ Co 90 Fe 10/ Cu / Co 90 Fe 10/ Mn 75 Ir 25/ Ta spin valves. The effect of interlayer coupling, magnetic anisotropy and texture on the spin valve coercivity is analyzed. Technological steps aimed at the low field coercivity reduction down to few tenths Oersted have been received.

2014 ◽  
Vol 215 ◽  
pp. 474-479 ◽  
Author(s):  
Larisa I. Naumova ◽  
M.A. Milyaev ◽  
N.G. Bebenin ◽  
Tatyana A. Chernyshova ◽  
Vyacheslav V. Proglyado ◽  
...  

The dependence of free layer coercivity on the angle between easy axis and applied magnetic field was studied on [Ta, (Ni80Fe20)60Cr40]/ Ni80Fe20/Co90Fe10/Cu/Co90Fe10/Mn75Ir25/Ta spin valves with various interlayer coupling. Sharp decrease on the angle was observed for ferromagnetically coupled spin valves. The coercivity was reduced down to tenth of Oersted without any decrease of GMR-effect by forming nearly parallel anisotropy configuration. The angles at which the transition from hysteretic to anhysteretic magnetic reversal takes place are detected by analyses of the angle dependence of coercivity. Interpretation of experimental data is based on Stoner-Wohlfarth coherent rotation approach.


1999 ◽  
Vol 594 ◽  
Author(s):  
B. J. Daniels ◽  
S. P. Bozeman ◽  
H HA

AbstractThe stresses in sputter-deposited, NiMn- and PtMn-pinned top spin valve multilayers were measured using a laser-based wafer curvature technique. As-deposited stresses were 150 to 180 MPa in compression for NiMn- and 970 to 1020 MPa in compression for PtMn-pinned spin valves. Following deposition and stress measurement, these films were annealed in an applied magnetic field of 250 Oe for 2 hours at 300°C. This anneal causes the antiferromagnetic layer to undergo a phase transformation from the face-centered cubic (fcc) to the face-centered tetragonal (fct) crystal structure. This phase transformation increases the average stresses in the spin valves to 740–800 MPa in tension for the NiMn-pinned spin valves and to 475–580 MPa for the PtMnpinned spin valves. Stress changes during the antiferromagnetic phase transformation were also observed as a function of annealing temperature and time during substrate heating, annealing, and cooling. The stress varied nearly linearly with temperature during the heating and cooling of the substrate, indicating that the bulk of the phase transformation occurs during the isothermal portion of the anneal. By monitoring stress vs time during the isothermal anneal, the progression of the antiferromagnetic phase transformation was observed. Final stress data obtained from the wafers annealed in the wafer curvature system (no applied magnetic field) are within 10% of those obtained using the magnetic annealing process.


2012 ◽  
Vol 190 ◽  
pp. 133-136
Author(s):  
V. Sohatsky

The magnetic and electric properties of Fe/Cu/Fe sandwiches deposited on Si were studied in order to improve the efficiency of such a model of spin transistor with a spin-valve. Evaluations of the energy balance and measurements of current dependence on voltage and applied magnetic field confirmed the possibility of amplification increasing in case of additional effect of current on remagnetization.


1999 ◽  
Vol 562 ◽  
Author(s):  
K. Attenborough ◽  
M. Cerisier ◽  
H. Boeve ◽  
J. De Boeck ◽  
G. Borghs ◽  
...  

ABSTRACTWe have studied the magnetic and structural properties of thin electrodeposited Co and Cu layers grown directly onto (100) n-GaAs and have investigated the influence of a buffer layer. A dominant fourfold anisotropy with a uniaxial contribution is observed in 10 nm Co electrodeposited films on GaAs. An easy axis is observed in the [001] GaAs direction with two hard axes of differing coercivities parallel to the [011] and [011] directions. For thicker films the easy axes in the [001] direction becomes less pronounced and the fourfold anisotropy becomes less dominant. Co films of similar thicknesses deposited onto an electrodeposited Cu buffer layer were nearly isotropic. From X-ray diffraction 21 nm Co layers on GaAs were found to be hcp with the c-axis tending to be in the plane of the film. The anisotropy is ascribed to the Co/GaAs interface and is held responsible for the unique spin-valve properties seen recently in electrodeposited Co/Cu films.


2021 ◽  
Author(s):  
Igor Yanilkin ◽  
Amir Gumarov ◽  
Gulnaz Gizzatullina ◽  
Roman Yusupov ◽  
Lenar Tagirov

We have investigated the low-temperature magnetoresistive properties of a thin epitaxial Pd0.92Fe0.08 film at different directions of the current and the applied magnetic field. The obtained experimental results are well described within an assumption of a single-domain magnetic state of the film. In a wide range of the appled field directions, the magnetization reversal proceeds in two steps via the intermediate easy axis. An epitaxial heterostructure of two magnetically separated ferromagnetic layers, Pd0.92Fe0.08/Ag/Pd0.96Fe0.04, was synthesized and studied with the dc magnetometry. Its magnetic configuration diagram has been constructed and the conditions have been determined for a controllable switching between stable parallel, orthogonal, and antiparallel arrangements of magnetic moments of the layers.


Sign in / Sign up

Export Citation Format

Share Document