Regression conditions that characterize free-Poisson and free-Kummer distributions

Author(s):  
Agnieszka Piliszek

We find the asymptotic spectral distribution of random Kummer matrix. Then we formulate and prove a free analogue of HV independence property, which is known for classical Kummer and Gamma random variables and for Kummer and Wishart matrices. We also prove a related characterization of free-Kummer and free-Poisson (Marchenko–Pastur) non-commutative random variables.


2010 ◽  
Vol 88 (1) ◽  
pp. 93-102 ◽  
Author(s):  
MARGARYTA MYRONYUK

AbstractLet X be a countable discrete abelian group with automorphism group Aut(X). Let ξ1 and ξ2 be independent X-valued random variables with distributions μ1 and μ2, respectively. Suppose that α1,α2,β1,β2∈Aut(X) and β1α−11±β2α−12∈Aut(X). Assuming that the conditional distribution of the linear form L2 given L1 is symmetric, where L2=β1ξ1+β2ξ2 and L1=α1ξ1+α2ξ2, we describe all possibilities for the μj. This is a group-theoretic analogue of Heyde’s characterization of Gaussian distributions on the real line.



1981 ◽  
Vol 18 (3) ◽  
pp. 652-659 ◽  
Author(s):  
M. J. Phillips

The negative exponential distribution is characterized in terms of two independent random variables. Only one of the random variables has a negative exponential distribution whilst the other can belong to a wide class of distributions. This result is then applied to two models for the reliability of a system of two modules subject to revealed and unrevealed faults to show when the models are equivalent. It is also shown, under certain conditions, that the system availability is only independent of the distribution of revealed failure times in one module when unrevealed failure times in the other module have a negative exponential distribution.



1980 ◽  
Vol 12 (04) ◽  
pp. 903-921 ◽  
Author(s):  
S. Kotz ◽  
D. N. Shanbhag

We develop some approaches to the characterization of distributions of real-valued random variables, useful in practical applications, in terms of conditional expectations and hazard measures. We prove several representation theorems generalizing earlier results, and establish stability theorems for two general characteristics introduced in this paper.









1966 ◽  
Vol 3 (02) ◽  
pp. 481-494 ◽  
Author(s):  
Morris L. Eaton

Throughout this paper, we shall write ℒ(W) = ℒ(Z) to mean the random variables W and Z have the same distribution. The relation “ℒ(W) = ℒ(;Z)” reads “the law of W equals the law of Z”.



1983 ◽  
Vol 20 (01) ◽  
pp. 202-208 ◽  
Author(s):  
George Kimeldorf ◽  
Peter F. Thall

It has been recently proved that if N, X 1, X 2, … are non-constant mutually independent random variables with X 1,X 2, … identically distributed and N non-negative and integer-valued, then the independence of and implies that X 1 is Bernoulli and N is Poisson. A well-known theorem in point process theory due to Fichtner characterizes a Poisson process in terms of a sum of independent thinnings. In the present article, simultaneous generalizations of both of these results are provided, including a joint characterization of the multinomial distribution and the Poisson process.



1981 ◽  
Vol 18 (03) ◽  
pp. 652-659 ◽  
Author(s):  
M. J. Phillips

The negative exponential distribution is characterized in terms of two independent random variables. Only one of the random variables has a negative exponential distribution whilst the other can belong to a wide class of distributions. This result is then applied to two models for the reliability of a system of two modules subject to revealed and unrevealed faults to show when the models are equivalent. It is also shown, under certain conditions, that the system availability is only independent of the distribution of revealed failure times in one module when unrevealed failure times in the other module have a negative exponential distribution.



Sign in / Sign up

Export Citation Format

Share Document