Computing Where Perturbations Affect the Acoustic Impulse Response in the Ocean

2018 ◽  
Vol 26 (02) ◽  
pp. 1850004
Author(s):  
John L. Spiesberger ◽  
Dmitry Yu Mikhin

We compute accurate maps of oceanic perturbations affecting transient acoustic signals propagating from source to receiver. The technological advance involves coupling the one-way wave equation (OWWE) propagation model with the theory for the Differential Measure of Influence (DMI) yielding the map. The DMI requires two finite-frequency solutions of the acoustic wave equation obeying reciprocity: from source to receiver and vice versa. OWWE satisfies reciprocity at basin-scales with sound speed varying horizontally and vertically. At infinite frequency, maps of the DMI collapse into rays. Mapping the DMI is useful for understanding measurements of acoustic perturbations at finite frequencies.

2009 ◽  
Vol 8 (3) ◽  
pp. 199-230 ◽  
Author(s):  
L.M.B.C. Campos ◽  
M.H. Kobayashi

The propagation of sound in shear flows is relevant to the acoustics of wall and duct boundary layers, and to jet shear layers. The acoustic wave equation in a shear flow has been solved exactly only for a plane unidirectional homentropic mean shear flow, in the case of three velocity profiles: linear, exponential and hyperbolic tangent. The assumption of homentropic mean flow restricts application to isothermal shear flows. In the present paper the wave equation in an plane unidirectional shear flow with a linear velocity profile is solved in an isentropic non-homentropic case, which allows for the presence of transverse temperature gradients associated with the ***non-uniform sound speed. The sound speed profile is specified by the condition of constant enthalpy, i.e. homenergetic shear flow. In this case the acoustic wave equation has three singularities at finite distance (besides the point at infinity), viz. the critical layer where the Doppler shifted frequency vanishes, and the critical flow points where the sound speed vanishes. By matching pairs of solutions around the singular and regular points, the amplitude and phase of the acoustic pressure in calculated and plotted for several combinations of wavelength and wave frequency, mean flow vorticity and sound speed, demonstrating, among others, some cases of sound suppression at the critical layer.


Geophysics ◽  
1991 ◽  
Vol 56 (8) ◽  
pp. 1164-1169 ◽  
Author(s):  
Paul Docherty

Kirchhoff migration has traditionally been viewed as an imaging procedure. Usually, few claims are made regarding the amplitudes in the imaged section. In recent years, a number of inversion formulas, similar in form to those of Kirchhoff migration, have been proposed. A Kirchhoff‐type inversion produces not only an image but also an estimate of velocity variations, or perhaps reflection coefficients. The estimate is obtained from the peak amplitudes in the image. In this paper prestack Kirchhoff migration and inversion formulas for the one‐parameter acoustic wave equation are compared. Following a heuristic approach based on the imaging principle, a migration formula is derived which turns out to be identical to one proposed by Bleistein for inversion. Prestack Kirchhoff migration and inversion are, thus, seen to be the same—both in terms of the image produced and the peak amplitudes of the output.


Geophysics ◽  
1981 ◽  
Vol 46 (8) ◽  
pp. 1116-1120 ◽  
Author(s):  
A. B. Weglein ◽  
W. E. Boyse ◽  
J. E. Anderson

We present a formalism for obtaining the subsurface velocity configuration directly from reflection seismic data. Our approach is to apply the results obtained for inverse problems in quantum scattering theory to the reflection seismic problem. In particular, we extend the results of Moses (1956) for inverse quantum scattering and Razavy (1975) for the one‐dimensional (1-D) identification of the acoustic wave equation to the problem of identifying the velocity in the three‐dimensional (3-D) acoustic wave equation from boundary value measurements. No a priori knowledge of the subsurface velocity is assumed and all refraction, diffraction, and multiple reflection phenomena are taken into account. In addition, we explain how the idea of slant stack in processing seismic data is an important part of the proposed 3-D inverse scattering formalism.


Geophysics ◽  
2021 ◽  
pp. 1-58
Author(s):  
Hongwei Liu ◽  
Yi Luo

We present a concise time-domain wave equation to accurately simulate wave propagation in visco-acoustic media. The central idea behind this work is to dismiss the negative frequency components from a time-domain signal by converting the signal to its analytic format. The negative frequency components of any analytic signal are always zero, meaning we can construct the visco-acoustic wave equation to honor the relaxation property of the media for positive frequencies only. The newly proposed complex-valued wave equation (CWE) represents the wavefield with its analytic signal, whose real part is the desired physical wavefield, while the imaginary part is the Hilbert transform of the real component. Specifically, this CWE is accurate for both weak and strong attenuating media in terms of both dissipation and dispersion and the attenuation is precisely linear with respect to the frequencies. Besides, the CWE is easy and flexible to model dispersion-only, dissipation-only or dispersion-plus-dissipation seismic waves. We have verified these CWEs by comparing the results with analytical solutions, and achieved nearly perfect matching. Except for the homogeneous Q media, we have also extended the CWEs to heterogeneous media. The results of the CWEs for heterogeneous Q media are consistent with those computed from the nonstationary operator based Fourier Integral method and from the Standard Linear Solid (SLS) equations.


Sign in / Sign up

Export Citation Format

Share Document