A brief comparison of some Kirchhoff integral formulas for migration and inversion

Geophysics ◽  
1991 ◽  
Vol 56 (8) ◽  
pp. 1164-1169 ◽  
Author(s):  
Paul Docherty

Kirchhoff migration has traditionally been viewed as an imaging procedure. Usually, few claims are made regarding the amplitudes in the imaged section. In recent years, a number of inversion formulas, similar in form to those of Kirchhoff migration, have been proposed. A Kirchhoff‐type inversion produces not only an image but also an estimate of velocity variations, or perhaps reflection coefficients. The estimate is obtained from the peak amplitudes in the image. In this paper prestack Kirchhoff migration and inversion formulas for the one‐parameter acoustic wave equation are compared. Following a heuristic approach based on the imaging principle, a migration formula is derived which turns out to be identical to one proposed by Bleistein for inversion. Prestack Kirchhoff migration and inversion are, thus, seen to be the same—both in terms of the image produced and the peak amplitudes of the output.

Geophysics ◽  
1984 ◽  
Vol 49 (2) ◽  
pp. 132-141 ◽  
Author(s):  
Edip Baysal ◽  
Dan D. Kosloff ◽  
J. W. C. Sherwood

In seismic modeling and in migration it is often desirable to use a wave equation (with varying velocity but constant density) which does not produce interlayer reverberations. The conventional approach has been to use a one‐way wave equation which allows energy to propagate in one dominant direction only, typically this direction being either upward or downward (Claerbout, 1972). We introduce a two‐way wave equation which gives highly reduced reflection coefficients for transmission across material boundaries. For homogeneous regions of space, however, this wave equation becomes identical to the full acoustic wave equation. Possible applications of this wave equation for forward modeling and for migration are illustrated with simple models.


Geophysics ◽  
1981 ◽  
Vol 46 (8) ◽  
pp. 1116-1120 ◽  
Author(s):  
A. B. Weglein ◽  
W. E. Boyse ◽  
J. E. Anderson

We present a formalism for obtaining the subsurface velocity configuration directly from reflection seismic data. Our approach is to apply the results obtained for inverse problems in quantum scattering theory to the reflection seismic problem. In particular, we extend the results of Moses (1956) for inverse quantum scattering and Razavy (1975) for the one‐dimensional (1-D) identification of the acoustic wave equation to the problem of identifying the velocity in the three‐dimensional (3-D) acoustic wave equation from boundary value measurements. No a priori knowledge of the subsurface velocity is assumed and all refraction, diffraction, and multiple reflection phenomena are taken into account. In addition, we explain how the idea of slant stack in processing seismic data is an important part of the proposed 3-D inverse scattering formalism.


Geophysics ◽  
2014 ◽  
Vol 79 (6) ◽  
pp. T363-T378 ◽  
Author(s):  
Jeffrey Shragge

The key computational kernel of most advanced 3D seismic imaging and inversion algorithms used in exploration seismology involves calculating solutions of the 3D acoustic wave equation, most commonly with a finite-difference time-domain (FDTD) methodology. Although well suited for regularly sampled rectilinear computational domains, FDTD methods seemingly have limited applicability in scenarios involving irregular 3D domain boundary surfaces and mesh interiors best described by non-Cartesian geometry (e.g., surface topography). Using coordinate mapping relationships and differential geometry, an FDTD approach can be developed for generating solutions to the 3D acoustic wave equation that is applicable to generalized 3D coordinate systems and (quadrilateral-faced hexahedral) structured meshes. The developed numerical implementation is similar to the established Cartesian approaches, save for a necessary introduction of weighted first- and mixed second-order partial-derivative operators that account for spatially varying geometry. The approach was validated on three different types of computational meshes: (1) an “internal boundary” mesh conforming to a dipping water bottom layer, (2) analytic “semiorthogonal cylindrical” coordinates, and (3) analytic semiorthogonal and numerically specified “topographic” coordinate meshes. Impulse response tests and numerical analysis demonstrated the viability of the approach for kernel computations for 3D seismic imaging and inversion experiments for non-Cartesian geometry scenarios.


2018 ◽  
Vol 26 (02) ◽  
pp. 1850004
Author(s):  
John L. Spiesberger ◽  
Dmitry Yu Mikhin

We compute accurate maps of oceanic perturbations affecting transient acoustic signals propagating from source to receiver. The technological advance involves coupling the one-way wave equation (OWWE) propagation model with the theory for the Differential Measure of Influence (DMI) yielding the map. The DMI requires two finite-frequency solutions of the acoustic wave equation obeying reciprocity: from source to receiver and vice versa. OWWE satisfies reciprocity at basin-scales with sound speed varying horizontally and vertically. At infinite frequency, maps of the DMI collapse into rays. Mapping the DMI is useful for understanding measurements of acoustic perturbations at finite frequencies.


2013 ◽  
Author(s):  
Rodrigo Bird Burgos ◽  
Marco Antonio Cetale Santos ◽  
Raul Rosas e Silva

Geophysics ◽  
2021 ◽  
pp. 1-58
Author(s):  
Hongwei Liu ◽  
Yi Luo

We present a concise time-domain wave equation to accurately simulate wave propagation in visco-acoustic media. The central idea behind this work is to dismiss the negative frequency components from a time-domain signal by converting the signal to its analytic format. The negative frequency components of any analytic signal are always zero, meaning we can construct the visco-acoustic wave equation to honor the relaxation property of the media for positive frequencies only. The newly proposed complex-valued wave equation (CWE) represents the wavefield with its analytic signal, whose real part is the desired physical wavefield, while the imaginary part is the Hilbert transform of the real component. Specifically, this CWE is accurate for both weak and strong attenuating media in terms of both dissipation and dispersion and the attenuation is precisely linear with respect to the frequencies. Besides, the CWE is easy and flexible to model dispersion-only, dissipation-only or dispersion-plus-dissipation seismic waves. We have verified these CWEs by comparing the results with analytical solutions, and achieved nearly perfect matching. Except for the homogeneous Q media, we have also extended the CWEs to heterogeneous media. The results of the CWEs for heterogeneous Q media are consistent with those computed from the nonstationary operator based Fourier Integral method and from the Standard Linear Solid (SLS) equations.


Sign in / Sign up

Export Citation Format

Share Document