Monte-Carlo Simulation of Surface Reactions in Plasma-Enhanced Chemical Vapor Deposition of Hydrogenated Amorphous Silicon Thin Films

1993 ◽  
Vol 32 (Part 1, No. 11A) ◽  
pp. 4946-4947 ◽  
Author(s):  
Tatsuru Shirafuji ◽  
Wei-ming Chen ◽  
Mikio Yamamuka ◽  
Kunihide Tachibana
2012 ◽  
Vol 569 ◽  
pp. 27-30
Author(s):  
Bao Jun Yan ◽  
Lei Zhao ◽  
Ben Ding Zhao ◽  
Jing Wei Chen ◽  
Hong Wei Diao ◽  
...  

Hydrogenated amorphous silicon germanium thin films (a-SiGe:H) were prepared via plasma enhanced chemical vapor deposition (PECVD). By adjusting the flow rate of GeH4, a-SiGe:H thin films with narrow bandgap (Eg) were fabricated with high Ge incorporation. It was found that although narrow Eg was obtained, high Ge incorporation resulted in a great reduction of the thin film photosensitivity. This degradation was attributed to the increase of polysilane-(SiH2)n, which indicated a loose and disordered microstructure, in the films by systematically investigating the optical, optoelectronic and microstructure properties of the prepared a-SiGe:H thin films via transmission, photo/dark conductivity, Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR) measurements. Such investigation provided a helpful guide for further preparing narrow Eg a-SiGe:H materials with good optoelectronic properties.


1996 ◽  
Vol 422 ◽  
Author(s):  
A. Polman ◽  
Jung H. Shin ◽  
R. Serna ◽  
G. N. Van Den Hovenb ◽  
W. G. J. H. M. van Sark ◽  
...  

AbstractHydrogenated amorphous silicon thin films, co-doped with oxygen, are made using lowpressure chemical vapor deposition (LPCVD) or plasma-enhanced chemical vapor deposition (PECVD). The films are implanted with Er to a peak concentration of 0.2 at.%. Roomtemperature photoluminescence at 1.54 μm is observed in both amorphous materials, after thermal annealing at 300–400 °C. The PECVD films with low 0 content (0.3, 1.3 at.%) show a luminescence intensity quenching by a factor 7–15 as the temperature is raised from 10 K to room temperature. The quenching is well correlated with a decrease in luminescence lifetime, indicating that non-radiative decay of excited Er3+ is the dominant quenching mechanism as the temperature is increased. In the LPCVD films, with 31 at.% 0, the quenching is only a factor 3, and no lifetime quenching is observed. The results are interpreted in the context of an impurity Auger excitation model, taking into account the fact that oxygen modifies the Si bandgap and the Er-related defect levels in the gap.


Sign in / Sign up

Export Citation Format

Share Document