Suppressed Short-Channel Effect of Double-Gate Metal Oxide Semiconductor Field-Effect Transistor and Its Modeling

2007 ◽  
Vol 46 (4B) ◽  
pp. 2096-2100 ◽  
Author(s):  
Hideki Oka ◽  
Ryo Tanabe ◽  
Norio Sadachika ◽  
Akihiro Yumisaki ◽  
Mitiko Miura-Mattausch
2020 ◽  
Vol 18 (6) ◽  
pp. 468-476
Author(s):  
Prateek Kumar ◽  
Maneesha Gupta ◽  
Naveen Kumar ◽  
Marlon D. Cruz ◽  
Hemant Singh ◽  
...  

With technology invading nanometer regime performance of the Metal-Oxide-semiconductor Field Effect Transistor is largely hampered by short channel effects. Most of the simulation tools available do not include short channel effects and quantum effects in the analysis which raises doubt on their authenticity. Although researchers have tried to provide an alternative in the form of tunnel field-effect transistors, junction-less transistors, etc. but they all suffer from their own set of problems. Therefore, Metal-Oxide-Semiconductor Field-Effect Transistor remains the backbone of the VLSI industry. This work is dedicated to the design and study of the novel tub-type Metal-Oxide-Semiconductor Field-Effect Transistor. For simulation Non-Equilibrium Green’s Function is used as the primary model of simulation. The device is analyzed under different physical variations like work function, permittivity, and interface trap charge. This work uses Silicon-Molybdenum Disulphide heterojunction and Silicon-Tungsten Disulphide heterojunction as channel material. Results for both the heterojunctions are compared. It was analyzed that Silicon-Molybdenum Disulphide heterojunction provides better linearity and Silicon-Tungsten Disulphide heterojunction provides better switching speed than conventional Metal-Oxide-Semiconductor Field-Effect Transistor.


Sign in / Sign up

Export Citation Format

Share Document