Flux and the Quantized Hall Conductance in Two-Dimensional Periodic Systems

1992 ◽  
Vol 61 (8) ◽  
pp. 2645-2648 ◽  
Author(s):  
Mahito Kohmoto
2019 ◽  
Vol 23 (01) ◽  
pp. 1950080
Author(s):  
D. I. Borisov ◽  
P. Exner

We present a new method of gap control in two-dimensional periodic systems with the perturbation consisting of a second-order differential operator and a family of narrow potential “walls” separating the period cells in one direction. We show that under appropriate assumptions one can open gaps around points determined by dispersion curves of the associated “waveguide” system, in general any finite number of them, and to control their widths in terms of the perturbation parameter. Moreover, a distinctive feature of those gaps is that their edge values are attained by the corresponding band functions at internal points of the Brillouin zone.


2015 ◽  
Vol 29 (24) ◽  
pp. 1550135
Author(s):  
Paul Bracken

It is shown that the Kubo equation for the Hall conductance can be expressed as an integral which implies quantization of the Hall conductance. The integral can be interpreted as the first Chern class of a [Formula: see text] principal fiber bundle on a two-dimensional torus. This accounts for the conductance given as an integer multiple of [Formula: see text]. The formalism can be extended to deduce the fractional conductivity as well.


1989 ◽  
Vol 03 (12) ◽  
pp. 1965-1995 ◽  
Author(s):  
Eduardo Fradkin

I consider a gas of “free” anyons with statistical paremeter δ on a two dimensional lattice. Using a recently derived Jordan-Wigner transformation, I map this problem onto a gas of fermions on a lattice coupled to a Chern-Simons gauge theory with coupling [Formula: see text]. I show that if [Formula: see text] and the density [Formula: see text], with r and q integers, the system is a superfluid. If q is even and the system is half filled the state may be either a superfluid or a Quantum Hall System depending on the dynamics. Similar conclusions apply for other values of ρ and δ. The dynamical stability of the Fetter-Hanna-Laughlin goldstone mode is insured by the topological invariance of the quantized Hall conductance of the fermion problem. This leads to the conclusion that anyon gases are generally superfluids or quantum Hall systems.


2009 ◽  
Vol 67 (4) ◽  
pp. 501-505 ◽  
Author(s):  
Y.-Z. Wang ◽  
F.-M. Li ◽  
K. Kishimoto ◽  
Y.-S. Wang ◽  
W.-H. Huang

Sign in / Sign up

Export Citation Format

Share Document