Nonlinear Stability of Optimal Velocity Traffic Flow Model to Unsteady Disturbance

2001 ◽  
Vol 70 (10) ◽  
pp. 3161-3166 ◽  
Author(s):  
Akihiro Sasoh
Author(s):  
Behrang Asadi ◽  
Chen Zhang ◽  
Ardalan Vahidi

A vehicle’s untimely arrival at a local traffic wave with lots of stops and goes increases its fuel use. This paper proposes predictive planning of the vehicle velocity for reducing the velocity transients in upcoming traffic waves. Macroscopic evolution of traffic pattern along the vehicle route is first estimated by combining a traffic flow model. The fuel optimal velocity trajectory is calculated by solving an optimal control problem with the spatiotemporally varying constraint imposed by the traffic. Preliminary simulation results indicate the potential for improvement in fuel economy with a little compromise on travel time.


2014 ◽  
Vol 25 (07) ◽  
pp. 1450018 ◽  
Author(s):  
Wen-Xing Zhu ◽  
Li-Dong Zhang

We proposed an original traffic flow model with a consideration of signal effect based on Bando's optimal velocity model. The optimal velocity function was improved more realistically in describing the motion process of vehicles moving on a road with signals. Based on the improved model, we derived the mathematical expression for energy dissipation. Simulations are conducted to verify the energy dissipation laws in traffic flow with signals. Numerical results show that energy dissipation (rate) can be affected not only by traffic density, but also traffic signal control parameters: split and cycle.


Author(s):  
Kallirroi N. Porfyri ◽  
Ioannis K. Nikolos ◽  
Anargiros I. Delis ◽  
Markos Papageorgiou

The occurrence of perturbations in traffic flow may lead to the formation of stop-and-go waves traveling upstream, or to traffic jams. Therefore, traffic flow stability analysis is considered to be one of the fundamental problems in traffic flow theory, and a lot of effort has been spent to analyze the formation and evolution of such traffic flow instabilities. Recent advances in the field of Vehicle Automation and Communication Systems (VACS), including the most widespread Adaptive Cruise Control (ACC) systems, may consist a possible solution in reducing the magnitude or even eradicating the development of such traffic flow instabilities. This paper aims to perform a nonlinear stability analysis of a second-order macroscopic traffic flow model, which was recently developed by the authors for the simulation of the traffic flow of ACC-equipped vehicles, and identify the ways that ACC systems affect the stability of the flow, in relation with large traffic disturbances around the equilibrium state. Numerical simulations are additionally conducted, to validate the derived stability conditions.


2003 ◽  
pp. 211-220 ◽  
Author(s):  
S. Tadaki ◽  
M. Kikuchi ◽  
K. Nishinari ◽  
Y. Sugiyama ◽  
S. Yukawa

2017 ◽  
Vol 31 (27) ◽  
pp. 1750244 ◽  
Author(s):  
Yu-Qing Wang ◽  
Bo-Wen Yan ◽  
Chao-Fan Zhou ◽  
Xing-Jian Chu ◽  
De-Chen Zhang ◽  
...  

In this paper, a modified microscopic traffic flow model accounting for the optimal velocity has been proposed. Different with previous models, drivers’ response ability and the maximum of accelerations are considered in the term of the optimal velocity. The effect of parameters in the term of the optimal velocity on bifurcations in the rotary traffic is studied here. Besides, the evolvement of bifurcations in the system is calculated by performing numerical simulation experiments. Moreover, the linear stability analysis of the proposed model is presented.


CICTP 2020 ◽  
2020 ◽  
Author(s):  
Lidong Zhang ◽  
Wenxing Zhu ◽  
Mengmeng Zhang ◽  
Cuijiao Chen

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3425
Author(s):  
Huanping Li ◽  
Jian Wang ◽  
Guopeng Bai ◽  
Xiaowei Hu

In order to explore the changes that autonomous vehicles would bring to the current traffic system, we analyze the car-following behavior of different traffic scenarios based on an anti-collision theory and establish a traffic flow model with an arbitrary proportion (p) of autonomous vehicles. Using calculus and difference methods, a speed transformation model is established which could make the autonomous/human-driven vehicles maintain synchronized speed changes. Based on multi-hydrodynamic theory, a mixed traffic flow model capable of numerical calculation is established to predict the changes in traffic flow under different proportions of autonomous vehicles, then obtain the redistribution characteristics of traffic flow. Results show that the reaction time of autonomous vehicles has a decisive influence on traffic capacity; the q-k curve for mixed human/autonomous traffic remains in the region between the q-k curves for 100% human and 100% autonomous traffic; the participation of autonomous vehicles won’t bring essential changes to road traffic parameters; the speed-following transformation model minimizes the safety distance and provides a reference for the bottom program design of autonomous vehicles. In general, the research could not only optimize the stability of transportation system operation but also save road resources.


2021 ◽  
Vol 94 ◽  
pp. 369-387
Author(s):  
Weilin Ren ◽  
Rongjun Cheng ◽  
Hongxia Ge

Sign in / Sign up

Export Citation Format

Share Document