Magnetism of UCo2Si2Single Crystal Studied under Applied Magnetic Field and Hydrostatic Pressure

2007 ◽  
Vol 76 (Suppl.A) ◽  
pp. 54-55 ◽  
Author(s):  
Matúš Mihalik ◽  
Oleksandr Kolomiyets ◽  
Jean-Christophe Griveau ◽  
Alexander V. Andreev ◽  
Vladimír Sechovský
2006 ◽  
Vol 512 ◽  
pp. 189-194 ◽  
Author(s):  
Jae Hoon Kim ◽  
Takashi Fukuda ◽  
Tomoyuki Kakeshita

The effects of magnetic field and hydrostatic pressure on martensitic transformation have been systematically investigated by using Ni2MnGa, Ni2.14Mn0.84Ga1.02, and Ni2.14Mn0.92Ga0.94, which exhibit P(parent phase)-I(intermediate phase)-10M, P-14M-2M, and P-2M transformation, respectively. The following results were obtained. (i) The P-I transformation temperature does not change by magnetic field. (ii) The I-10M and the P-14M transformation temperatures decrease under applied magnetic field up to 0.8 MA/m and 0.4 MA/m, respectively, and then increase with increasing applied magnetic field higher than those fields. (iii) The 14M-2M transformation temperature increases under a magnetic field up to 0.4 MA/m and decreases under magnetic field up to 0.8 MA/m and then increases again when the magnetic field becomes higher than 0.8 MA/m. (iv) The P-2M transformation temperature increases linearly with increasing applied magnetic field. (v) All transformation temperatures increase linearly with increasing hydrostatic pressure. The experimental results mentioned above (i)~(iv) under magnetic field can be well explained by using the Clausius-Clapeyron equation.


2008 ◽  
Vol 52 ◽  
pp. 189-197 ◽  
Author(s):  
Xavier Moya ◽  
Lluís Mañosa ◽  
Antoni Planes ◽  
Seda Aksoy ◽  
Mehmet Acet ◽  
...  

In this paper, we discuss the possibility of inducing a martensitic transition by means of an applied magnetic field or hydrostatic pressure in Ni-Mn based Heusler shape memory alloys. We report on the shift of the martensitic transition temperatures with applied magnetic field and applied pressure and we show that it is possible to induce the structural transformation in a Ni50Mn34In16 alloy by means of both external fields due to: (i) the low value of the entropy change and (ii) the large change of magnetization and volume, which occur at the martensitic transition.


2019 ◽  
Vol 33 (27) ◽  
pp. 1950325 ◽  
Author(s):  
Jin-Feng You ◽  
Qiang Zhao ◽  
Zhi-Hai Zhang ◽  
Jian-Hui Yuan ◽  
Kang-Xian Guo ◽  
...  

In this paper, we explore the optical properties of AlGaAs/GaAs semi-parabolic quantum well (QW) under different temperature, hydrostatic pressure and applied magnetic field. We calculate the nonlinear optical absorption coefficients and the refractive index changes (RICs) with the compact density-matrix approach and iterative method. Then, within the framework of the effective mass and parabolic-band approximations, the energy eigenvalues and the corresponding wave functions for semi-parabolic QW have been obtained by the finite difference method. The theoretical findings show that (1) the energy spectrum depends strongly on temperature, hydrostatic pressure and applied magnetic field; (2) the linear and third-order nonlinear optical absorption coefficients and the RICs are quite sensitive to temperature, hydrostatic pressure and applied magnetic field. Our study provides a theoretical basis for the fabrication of QW structure.


2006 ◽  
Vol 26 (4) ◽  
pp. 479-483 ◽  
Author(s):  
M. Mihalik ◽  
A. Kolomiets ◽  
J.-C. Griveau ◽  
A. V. Andreev ◽  
V. Sechovský

Sign in / Sign up

Export Citation Format

Share Document