scholarly journals Nuclear Binding Energies and Low-Lying Energy Levels in the 2s1/2and 1d3/2Shells

1958 ◽  
Vol 19 (4) ◽  
pp. 421-450 ◽  
Author(s):  
Akito Arima
Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 13
Author(s):  
Mohd. Muddassir ◽  
Abdullah Alarifi ◽  
Mohd. Afzal

A new complex (Ru(η6-p-cymene)(5-ASA)Cl2) (1) where 5-ASA is 5-aminosalicylic acid has been prepared by reacting the ruthenium arene precursors ((η6-arene)Ru(μ-Cl)Cl)2, with the 5-ASA ligands in a 1:1 ratio. Full characterization of complex 1 was accomplished by elemental analysis, IR, and TGA following the structure obtained from a single-crystal X-ray pattern. The structural analysis revealed that complex 1 shows a “piano-stool” geometry with Ru-C (2.160(5)- 2.208(5)Å), Ru-N (2.159(4) Å) distances, which is similar to equivalents sister complex. Density functional theory (DFT) was used to calculate the significant molecular orbital energy levels, binding energies, bond angles, bond lengths, and spectral data (FTIR, NMR, and UV–VIS) of complex 1, consistent with the experimental results. The IR and UV–VIS spectra of complex 1 were computed using all of the methods and choose the most appropriate way to discuss. Hirshfeld surface analysis was also executed to understand the role of weak interactions such as H⋯H, C⋯H, C-H⋯π, and vdW interactions, which play a significant role in the crystal environment’s stability. Moreover, the luminescence results at room temperature show that complex 1 gives a more intense emission band positioned at 465 nm upon excitation at 330 nm makes it a suitable candidate for the building of photoluminescent material.


2018 ◽  
Vol 96 (10) ◽  
pp. 1104-1115 ◽  
Author(s):  
R.L.M. Melono ◽  
D. Dobgima ◽  
O. Motapon

The energy levels, ground state binding energies, and electric dipole polarizabilities of hydrogenic impurities in quantum dots and quantum nanowires have been investigated using a non-relativistic B-spline based variational method. Firstly, we have worked on the characterization of those impurities (donor/electron) in quantum dots and quantum nanowires, considering the two cases where the impurity is centered or off-centered in the nanostructure. Secondly, the electric dipole polarizabilities have been computed and their sensitivity with confinement parameters investigated. So the energies, binding energies, and dipole polarizabilities were reported for the centered and the off-centered donor and electron impurities as a function of the cavity radius and the off-center displacement. We found that the polarization of the studied system greatly depends on the model potential form, the off-center displacement, and the cavity radius. In the case of quantum dots and for the parabolic potential, the convergence of the polarizability for large values of the quantum size is shown. For the quantum nanowire case, we have shown that the polarizability is greater in the case of the z axis displacement than that of the transversal one. This leads to the fact that the system is more polarizable when the impurity is moved along the z axis than the transversal one.


2006 ◽  
Vol 15 (02) ◽  
pp. 339-345 ◽  
Author(s):  
F. CHAPPERT ◽  
M. GIROD

A new parameterization of the effective Gogny interaction is investigated. It has the property of fitting the neutron matter Equation Of State (EOS) as predicted by a variational calculation. Its properties in nuclear matter (saturation point, compressibility, …) and in nuclei (binding energies) are presented.


2005 ◽  
Vol 95 (4) ◽  
Author(s):  
Yu. A. Litvinov ◽  
T. J. Bürvenich ◽  
H. Geissel ◽  
Yu. N. Novikov ◽  
Z. Patyk ◽  
...  

1939 ◽  
Vol 55 (8) ◽  
pp. 691-698 ◽  
Author(s):  
Walter H. Barkas

1999 ◽  
Vol 607 ◽  
Author(s):  
Q.X. Zhao ◽  
M. Willander

AbstractEnergy levels of the shallow acceptor states have been calculated for center-doped Si/Si1−xGex/Si quantum wells (QWs). The impurity states were calculated using an effective-mass theory that accounts for valence-band mixing as well as the mismatch of band parameters and dielectric constants between well and barrier materials. Acceptor binding energies and splitting between the acceptor 1S3/2(Γ7) and 1S3/2(Γ6) ground states were studied at various Ge concentrations and well widths. The results are discussed in comparison with the recent experimental data from the lateral transport measurements in boron-doped Si/SiGe quantum wells.


2015 ◽  
Vol 30 (27) ◽  
pp. 1530022 ◽  
Author(s):  
H. Weigel ◽  
M. Quandt ◽  
N. Graham

In the standard model, stabilization of a classically unstable cosmic string may occur through the quantum fluctuations of a heavy fermion doublet. We review numerical results from a semiclassical expansion in a reduced version of the standard model. In this expansion, the leading quantum corrections emerge at one loop level for many internal degrees of freedom. The resulting vacuum polarization energy and the binding energies of occupied fermion energy levels are of the same order, and must therefore be treated on equal footing. Populating these bound states lowers the total energy compared to the same number of free fermions and assigns a charge to the string. Charged strings are already stabilized for a fermion mass only somewhat larger than the top quark mass. Though obtained in a reduced version, these results suggest that neither extraordinarily large fermion masses nor unrealistic couplings are required to bind a cosmic string in the standard model. Furthermore, we also review results for a quantum stabilization mechanism that prevents closed Nielsen–Olesen-type strings from collapsing.


Sign in / Sign up

Export Citation Format

Share Document