scholarly journals Distribution of deep-sea benthic foraminifera in the Neogene of Blake Ridge, NW Atlantic Ocean

2011 ◽  
Vol 30 (1) ◽  
pp. 33-74 ◽  
Author(s):  
Kuppusamy Mohan ◽  
Anil K. Gupta ◽  
Ajoy K. Bhaumik

Abstract. This study describes and illustrates the evolution of deep-sea benthic foraminifera from the Blake Ridge during the late Neogene. In total, 305 species of benthic foraminifera belonging to 107 genera were identified. The Blake Ridge receives fine-grained nannofossil-bearing hemipelagic sediments, transported from the Canadian continental margin by the Deep Western Boundary Undercurrent (DWBUC). We thus presume that changes in benthic foraminifera at Ocean Drilling Program (ODP) sites 991A, 994C, 995A and B and 997A reflect mainly changes in the intensity of the DWBUC, which is closely related to North Atlantic Deep Water (NADW) production. However, the dominance of Uvigerina peregrina, U. proboscidea and Cassidulina carinata during the late Miocene in all the holes suggests an increased influence of Southern Component Waters in the Blake Ridge region. During the early Pliocene (4.8–2.8 Ma) in all the sites benthic faunal assemblages suggest that there was an increased transport of organic-rich sediments by the DWBUC from the Canadian margin to the Blake Ridge, driven by increased production of NADW. During this time the species diversity (Sanders' rarefied values) was low. In the younger interval (since 2.8 Ma), the faunal data suggest less transport of organic-rich sediments to the Blake Ridge, which appears to be related to weakening of the DWBUC during cold intervals. An increase in species diversity at 3 Ma probably resulted from decreased population of bacteria due to low organic matter and/or less competition. In the late Pleistocene (c. 0.6 Ma), Stilostomella lepidula became extinct in all the studied holes, suggesting that this species may have possessed a mode of feeding which no longer existed in the cold, well-oxygenated oceans of the present.

2020 ◽  
Vol 50 (2) ◽  
pp. 111-127
Author(s):  
Tushar Kaushik ◽  
Ashutosh Kumar Singh ◽  
Devesh Kumar Sinha

ABSTRACT A biostratigraphic and biochronological study from the late Neogene–Quaternary section of Ocean Drilling Program (ODP) Site 807A, located on the Ontong Java Plateau, western equatorial Pacific, revealed 50 planktic foraminiferal events, enabling the identification of eight late Neogene–Quaternary biozones, from the Globorotalia plesiotumida Interval Zone to the Globorotalia truncatulinoides Interval Zone. A significant faunal turnover (17 events) from late Pliocene identified in cores 7 and 8, between 70 and 55 meters below seafloor (mbsf), and spanning 0.67 million years (Myr). This noteworthy turnover may be the result of a shift in oceanographic conditions pertaining to the closure of the Indo–Pacific Seaway, followed by the Northern Hemisphere Glaciation. This study provides a high resolution biostratigraphic and biochronological framework for ODP Site 807A that will aid in correlation and timing the various paleoceanographic changes over the last 6 million years in the western equatorial Pacific.


2021 ◽  
Vol 58 (1) ◽  
pp. 67-83
Author(s):  
Aurélie M.R. Aubry ◽  
Anne de Vernal ◽  
Paul C. Knutz

Analyses of marine and terrestrial palynomorphs of Ocean Drilling Program (ODP) Site 645 in Baffin Bay led us to define a new biostratigraphical scheme covering the late Miocene to Pleistocene based on dinocyst and acritarch assemblages. Four biozones were defined. The first one, from 438.6 m below sea floor (mbsf) to 388 mbsf, can be assigned a late Miocene to early Pliocene age (>4.5 Ma), based on the common occurrence of Cristadinium diminutivum and Selenopemphix brevispinosa. Biozone 2, spanning from an erosional unconformity to a recovery hiatus, is marked by the highest occurrences (HOs) of Veriplicidium franklinii and Cristadinium diminutivum, which suggest an early Pliocene age >3.6 Ma (∼4.5 to ∼3.6 Ma). Biozone 3, above the recovery hiatus and up to 220.94 mbsf, corresponds to a late Pliocene or early Pleistocene age based on occurrences of Bitectatodinium readwaldii, Cymatiosphaera? icenorum, and Lavradosphaera canalis. Finally, between 266.4 and 120.56 mbsf, Biozone 4, marked by the HO of Filisphaera filifera, Filisphaera microornata, and Habibacysta tectata, has an early Pleistocene age (>1.4 Ma). Our biostratigraphy implies that horizon b1 of the Baffin Bay seismic stratigraphy corresponds to the recovery hiatus at ODP Site 645, which suggests a very thick Pliocene sequence along the Baffin Island slope. Dinocyst assemblages and terrestrial palynomorphs in our records indicate that the late Miocene and (or) early Pliocene were characterized by relatively warm coastal surface waters and boreal forest or forested tundra vegetation over adjacent lands. In contrast, the early Pleistocene dinocyst assemblages above the recovery hiatus indicate cold surface waters, while pollen data suggest reduced vegetation cover on adjacent lands.


2015 ◽  
Vol 34 (1) ◽  
pp. 21-49 ◽  
Author(s):  
Moriaki Yasuhara ◽  
Hisayo Okahashi

Abstract. Taxonomic revision and re-evaluation of the eastern North Atlantic deep-sea ostracods are conducted based on late Quaternary sediments from Ocean Drilling Program (ODP) Hole 982A, Rockall Plateau, eastern North Atlantic. Twenty-one genera and 51 species were examined and (re-)illustrated with high-resolution scanning electron microscopy images. Six new species are described: Polycope lunaris, Argilloecia labri, Bythoceratina nuda, Cytheropteron colesoabyssorum, Cytheropteron colesopunctatum and Cytheropteron paramediotumidum. Excellent fossil ostracod preservation in this sediment core enabled us to provide a robust taxonomic baseline of the eastern North Atlantic deep-sea ostracods for application to palaeoceanographical, palaeoecological and biogeographical studies.


Sign in / Sign up

Export Citation Format

Share Document