faunal turnover
Recently Published Documents


TOTAL DOCUMENTS

183
(FIVE YEARS 34)

H-INDEX

31
(FIVE YEARS 3)

Geobios ◽  
2021 ◽  
Author(s):  
Trevor H. Worthy ◽  
R. Paul Scofield ◽  
Steven W. Salisbury ◽  
Suzanne J. Hand ◽  
Vanesa L. De Pietri ◽  
...  

Author(s):  
J.P. Reynard

Abstract Analyses of faunal remains are a key means of inferring palaeoenvironmental change. In this paper, the use of faunal remains as a proxy for environmental conditions from Marine Isotope Stage 6 to the Holocene in southern Africa is reviewed. The focus of this review is on large herbivore abundance and how these fluctuate temporally and regionally in accordance with palaeo-climatic shifts. Here, southern Africa is divided into four eco-regions loosely based on climatic, biotic and zoogeographic traits: the Cape Floristic Region, the arid and semi-arid region, the savanna and grassland region, and the wetter eastern region. The relative abundance of large herbivores within these regions are noted, and temporal trends are inferred. On the whole, most eco-regions maintain similar herbivore compositions over time showing the regional ecological resilience of these taxa to local-scale environmental change. Yet some changes in faunal frequencies are apparent. The Cape Floristic Region shows evidence of significant faunal turnover from the Late Pleistocene to the Holocene. Here, grazers are significantly more abundant during glacial periods, probably linked to the terrestrial expansion of the palaeo-Agulhas coastal plain. Shifts in ungulate abundance in the currently xeric central interior, also indicate wetter periods in the Pleistocene. Holocene faunas are generally similar to historic distributions but shifts between xeric and mesic periods are also evident.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12242
Author(s):  
Celina A. Suarez ◽  
Joseph Frederickson ◽  
Richard L. Cifelli ◽  
Jeffrey G. Pittman ◽  
Randall L. Nydam ◽  
...  

We present a previously discovered but undescribed late Early Cretaceous vertebrate fauna from the Holly Creek Formation of the Trinity Group in Arkansas. The site from the ancient Gulf Coast is dominated by semi-aquatic forms and preserves a diverse aquatic, semi-aquatic, and terrestrial fauna. Fishes include fresh- to brackish-water chondrichthyans and a variety of actinopterygians, including semionotids, an amiid, and a new pycnodontiform, Anomoeodus caddoi sp. nov. Semi-aquatic taxa include lissamphibians, the solemydid turtle Naomichelys, a trionychid turtle, and coelognathosuchian crocodyliforms. Among terrestrial forms are several members of Dinosauria and one or more squamates, one of which, Sciroseps pawhuskai gen. et sp. nov., is described herein. Among Dinosauria, both large and small theropods (Acrocanthosaurus, Deinonychus, and Richardoestesia) and titanosauriform sauropods are represented; herein we also report the first occurrence of a nodosaurid ankylosaur from the Trinity Group. The fauna of the Holly Creek Formation is similar to other, widely scattered late Early Cretaceous assemblages across North America and suggests the presence of a low-diversity, broadly distributed continental ecosystem of the Early Cretaceous following the Late Jurassic faunal turnover. This low-diversity ecosystem contrasts sharply with the highly diverse ecosystem which emerged by the Cenomanian. The contrast underpins the importance of vicariance as an evolutionary driver brought on by Sevier tectonics and climatic changes, such as rising sea level and formation of the Western Interior Seaway, impacting the early Late Cretaceous ecosystem.


2021 ◽  
Vol 9 ◽  
Author(s):  
Laurie R. Godfrey ◽  
Brooke E. Crowley ◽  
Kathleen M. Muldoon ◽  
Stephen J. Burns ◽  
Nick Scroxton ◽  
...  

Madagascar experienced a major faunal turnover near the end of the first millenium CE that particularly affected terrestrial, large-bodied vertebrate species. Teasing apart the relative impacts of people and climate on this event requires a focus on regional records with good chronological control. These records may document coeval changes in rainfall, faunal composition, and human activities. Here we present new paleontological and paleoclimatological data from southwestern Madagascar, the driest part of the island today. We collected over 1500 subfossil bones from deposits at a coastal site called Antsirafaly and from both flooded and dry cave deposits at Tsimanampesotse National Park. We built a chronology of Late Holocene changes in faunal assemblages based on 65 radiocarbon-dated specimens and subfossil associations. We collected stalagmites primarily within Tsimanampesotse but also at two additional locations in southern Madagascar. These provided information regarding hydroclimate variability over the past 120,000 years. Prior research has supported a primary role for drought (rather than humans) in triggering faunal turnover at Tsimanampesotse. This is based on evidence of: (1) a large freshwater ecosystem west of what is now the hypersaline Lake Tsimanampesotse, which supported freshwater mollusks and waterfowl (including animals that could not survive on resources offered by the hypersaline lake today); (2) abundant now-extinct terrestrial vertebrates; (3) regional decline or disappearance of certain tree species; and (4) scant local human presence. Our new data allow us to document the hydroclimate of the subarid southwest during the Holocene, as well as shifts in faunal composition (including local extirpations, large-vertebrate population collapse, and the appearance of introduced species). These records affirm that climate alone cannot have produced the observed vertebrate turnover in the southwest. Human activity, including the introduction of cattle, as well as associated changes in habitat exploitation, also played an important role.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Francisco J. Prevosti ◽  
Cristo O. Romano ◽  
Analía M. Forasiepi ◽  
Sidney Hemming ◽  
Ricardo Bonini ◽  
...  

AbstractThe vertebrate fossil record of the Pampean Region of Argentina occupies an important place in South American vertebrate paleontology. An abundance of localities has long been the main basis for constructing the chronostratigraphical/geochronological scale for the late Neogene–Quaternary of South America, as well as for understanding major patterns of vertebrate evolution, including the Great American Biotic Interchange. However, few independently-derived dates are available for constraining this record. In this contribution, we present new 40Ar/39Ar dates on escorias (likely the product of meteoric impacts) from the Argentinean Atlantic coast and statistically-based biochronological analyses that help to calibrate Late Miocene–Pliocene Pampean faunal successions. For the type areas of the Montehermosan and Chapadmalalan Ages/Stages, our results delimit their age ranges to 4.7–3.7 Ma and ca. 3.74–3.04 Ma, respectively. Additionally, from Buenos Aires Province, dates of 5.17 Ma and 4.33 Ma were recovered for “Huayquerian” and Montehermosan faunas. This information helps to better calibrate important first appearances of allochthonous taxa in South America, including one of the oldest records for procyonids (7.24–5.95 Ma), cricetids (6.95–5.46 Ma), and tayassuids (> 3.74 Ma, oldest high-confidence record). These results also constrain to ca. 3 Ma the last appearances of the autochthonous sparassodonts, as well as terror birds of large/middle body size in South America. South American faunal turnover during the late Neogene, including Late Pliocene extinctions, is interpreted as a consequence of knock-on effects from global climatic changes and initiation of the icehouse climate regime.


Author(s):  
Viktor Karádi

AbstractThe Norian represents the longest stage of the Triassic, nevertheless, its precise subdivision is an unresolved matter. Conodonts might be useful in the establishment of an accurate biozonation to avoid common scientific misinterpretations. Understanding the Norian evolutionary trends and morphological changes of the Ancyrogondolella lineage (genus Ancyrogondolella and descendant genera Epigondolella, Orchardella and Mockina) is of key importance in this issue. The forward shifting of the pit and the posterior prolongation of the keel and the carina characterize the main trend that corresponds to the faunal turnover around the Lacian-Alaunian transition. A gradual decrease in overall element width and length can be observed from that time on, which couples with a decrease in the length of the free blade and an increase in the height of the anterior platform denticles. The presence of secondary carinae is characteristic for the mid-Lacian 1 to Alaunian 1, but their development shows no trends and has no taxonomic value. Adult specimens of the Lacian generally have an arched lower profile, whereas in the Alaunian and Sevatian the lower profile is dominantly stepped or straight. The thorough documentation of the Tethyan assemblages is needed for any detailed taxonomic and paleobiogeographic comparisons with other regions.


2021 ◽  
Author(s):  
Andrea Benedetti ◽  
Cesare Andrea Papazzoni ◽  
Francesca Romana Bosellini

<p>It is largely accepted that climate plays a pivotal role in the diversification of shallow-water communities, with special regards to larger foraminifera (LF), also because increase of surface water temperatures is often accompanied by change in trophic conditions. The shift from widespread eutrophic to oligotrophic conditions in shallow seas probably contributed to the LF differentiation during Paleocene-Eocene times. However, there are few recent attempts to quantify the changes in biodiversity and to correlate them with the global climatic events of the Paleogene. We concentrated our attention on the group of rotaliids, resilient taxa that partially survived after the mass extinction occurred at the end of the Cretaceous.</p><p>Our data show that their differentiation at genus level was very rapid, reaching its maximum already in the late Danian SB2 Zone. Specific diversification, instead, culminated in late Thanetian SB4 Zone. A second peak in specific diversity is recorded during the Cuisian (upper part of the Ypresian), then rotaliid diversity steadily declined, as long as other groups of larger foraminifers, especially <em>Alveolina </em>and <em>Nummulites</em>, became more competitive and proliferated with a large number of species up to the Bartonian SB17 Zone, when a significant drop in rotaliid biodiversity is recorded.</p><p>Differently to other taxonomic groups, i.e., alveolinids and nummulitids, for which a single genus during the whole Eocene generated numerous species, rotaliid genera are usually characterized by a low number of species, possibly due to the re-opening of ecological niches after the abrupt decrease of diversity that followed the PETM event. The competition with other K-strategist LF probably contributed to the decline of rotaliids in the middle Eocene up to the MECO event, where a last dramatic drop is recorded.</p><p>The major changes appear strictly linked to warming events such as the Late Danian Event (LDE, starting of the generic diversification of rotaliids), Paleocene Eocene Termal Maximum (PETM, faunal turnover followed by abrupt decrease in both generic and specific diversity), Early Eocene Climatic Optimum (EECO, increase in number of K-strategists under widespread oligotrophic conditions) and Middle Eocene Climatic Optimum (MECO, ultimate drop in diversity and competition with other larger foraminifers).</p><p>This study was funded by the Italian Ministry of Education and Research (MIUR), funds PRIN 2017: project “Biota resilience to global change: biomineralization of planktic and benthic calcifiers in the past, present and future” (prot. 2017RX9XXY).</p>


2021 ◽  
Author(s):  
Juan Andrade ◽  
Mathieu Schuster ◽  
Alexis Nutz ◽  
Bert Van Bocxlaer

<p>The northern Turkana Depression of the East African Rift System in Northern Kenya and Southwestern Ethiopia has one of the most complete and well-documented late Cenozoic continental fossil records worldwide, including remarkable finds of early hominins and associated African Cenozoic vertebrates. Most previous paleoenvironmental reconstructions of the depression were developed using terrestrial vertebrate faunas and paleolandscapes, leaving freshwater ecosystems and associated hydrosystems (lakes, tributaries, river deltas, and wetlands) largely unaddressed. African Cenozoic freshwater mollusks were long considered to be good biostratigraphic indicators, given that their communities are able to represent long phases of morphological stability and at other times rapid morphological changes. However, to what extent changes in freshwater mollusk assemblages match with changes in sedimentary landscapes and lake level fluctuations remains unclear. Here, we address this question through integrative studies on Plio-Pleistocene fossil freshwater mollusks assemblages. Specifically, we are developing a taxonomic framework on fossil freshwater bivalves belonging to the families Unionidae, Iridinidae, Etheriidae and Corbiculidae to create a standardized overview of stratigraphically well-characterized fossil assemblages. Subsequently, we integrate this paleontological dataset with sedimentological characterizations of the depositional environments in which shell beds accumulated at high resolution around faunal turnover events. A detailed reconstruction of environmental changes and how these changes affected freshwater ecosystems in the northern Turkana Depression may allow us to recognize key environmental drivers that triggered faunal turnover events. Such an understanding of drivers from the past perhaps provides our best hope to anticipate how future environmental changes will alter freshwater ecosystems in tropical Africa, and, ultimately, the availability of various freshwater resources on which humanity depends.</p>


Sign in / Sign up

Export Citation Format

Share Document