Tree ferns and tea trees in biogeochemical exploration for epithermal Au and Ag in New Zealand

2019 ◽  
Vol 20 (3) ◽  
pp. 299-314
Author(s):  
C. E. Dunn ◽  
A. B. Christie

Biogeochemical orientation surveys were undertaken at low sulphidation epithermal Au–Ag occurrences in the Hauraki Goldfield–Coromandel Volcanic Zone and the Taupo Volcanic Zone, and at the Waiotapu active geothermal area in the Taupo Volcanic Zone. Several plant species were sampled, including the foliage of tree ferns and tea trees. The ferns – silver fern (ponga), rough tree fern (wheki) and black tree fern (mamaku) – were ubiquitous and were the easiest species to sample, although tea tree was the dominant genus at Waiotapu. At the Waiotapu geothermal area, significantly higher concentrations of Ag, Au, Sb, As, Cs and Rb were present in samples close to Champagne Pool than elsewhere, confirming its location as the main outflow source of Au, Ag and their pathfinder elements. The fern survey areas at Luck at Last mine, Pine Sinter and Ohui in the Coromandel Volcanic Zone each exhibited biogeochemical anomalies, which successfully highlighted most of the known quartz veins and provided additional anomalies for further investigation. Rough tree fern was the most common species at Goldmine Hill, Puhipuhi (Taupo Volcanic Zone). Although this species absorbs lower concentrations of many elements than the silver fern, the spatial distribution of elements is of greater significance than their absolute concentrations. The highest Au, Ag, As and Al concentrations occurred in samples from a ridge extending WNW from Goldmine Hill. Sb and Bi were at anomalous levels in an area peripheral to the precious metal anomalies, indicating the potential zonation of elements distal from the Au and Ag deposits.Supplementary material: The full datasets on the fern and tea tree chemistry, including quality assurance/quality control and multi-element plots, are available free of charge through the GNS Science website (search for Dunn) at http://shop.gns.cri.nz/publications/science-reports/.

2021 ◽  
pp. jgs2020-204
Author(s):  
Christopher Svoboda ◽  
Tyrone O. Rooney ◽  
Guillaume Girard ◽  
Chad Deering

Studies synthesizing field work, numerical simulations, petrology, geochemistry, and geophysical observations indicate that the compositional diversity of arc lavas results from evolution of mantle-derived magmas by mixing, assimilation, and fractional crystallization. This evolution occurs within complexes called transcrustal magmatic systems. The mafic lower parts of such zones, called hot zones, are difficult to probe. However, a satellite vent near the stratovolcano Ruapehu in the southern Taupo Volcanic Zone (New Zealand) comprises materials that may originate from a hot zone. Magnesian andesites (Mg#64-69) from the Ohakune scoria cone contain primitive olivine (Fo85-91), high Mg# clinopyroxene (Mg#81-88), and orthopyroxene (Mg#76-83), but lack plagioclase. Disequilibrium of Ohakune crystals and groundmass suggests that the crystal cargo of Ohakune andesites was scavenged from deeper and more primitive levels of the magmatic system. Mineral constraints on temperature and pressure indicate that the hot zone initially formed at mid- to lower-crustal pressures (3.5-7.0±2.8 kbar). We interpret the mafic mineralogy and presence of disequilibrium features as evidence that these andesites and their crystal cargo are products of a hot zone in the middle to lower crust. Products of the hot zone may appear before products of the systems that form the bases of mature stratovolcanoes such as Ruapehu.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5494984


2016 ◽  
Vol 82 (12) ◽  
pp. 3572-3581 ◽  
Author(s):  
Kevin C. Lee ◽  
Matthew B. Stott ◽  
Peter F. Dunfield ◽  
Curtis Huttenhower ◽  
Ian R. McDonald ◽  
...  

ABSTRACTChthonomonas calidiroseaT49Tis a low-abundance, carbohydrate-scavenging, and thermophilic soil bacterium with a seemingly disorganized genome. We hypothesized that theC. calidiroseagenome would be highly responsive to local selection pressure, resulting in the divergence of its genomic content, genome organization, and carbohydrate utilization phenotype across environments. We tested this hypothesis by sequencing the genomes of fourC. calidiroseaisolates obtained from four separate geothermal fields in the Taupō Volcanic Zone, New Zealand. For each isolation site, we measured physicochemical attributes and defined the associated microbial community by 16S rRNA gene sequencing. Despite their ecological and geographical isolation, the genome sequences showed low divergence (maximum, 1.17%). Isolate-specific variations included single-nucleotide polymorphisms (SNPs), restriction-modification systems, and mobile elements but few major deletions and no major rearrangements. The 50-fold variation inC. calidirosearelative abundance among the four sites correlated with site environmental characteristics but not with differences in genomic content. Conversely, the carbohydrate utilization profiles of theC. calidiroseaisolates corresponded to the inferred isolate phylogenies, which only partially paralleled the geographical relationships among the sample sites. Genomic sequence conservation does not entirely parallel geographic distance, suggesting that stochastic dispersal and localized extinction, which allow for rapid population homogenization with little restriction by geographical barriers, are possible mechanisms ofC. calidiroseadistribution. This dispersal and extinction mechanism is likely not limited toC. calidiroseabut may shape the populations and genomes of many other low-abundance free-living taxa.IMPORTANCEThis study compares the genomic sequence variations and metabolisms of four strains ofChthonomonas calidirosea, a rare thermophilic bacterium from the phylumArmatimonadetes. It additionally compares the microbial communities and chemistry of each of the geographically distinct sites from which the fourC. calidiroseastrains were isolated.C. calidiroseawas previously reported to possess a highly disorganized genome, but it was unclear whether this reflected rapid evolution. Here, we show that each isolation site has a distinct chemistry and microbial community, but despite this, theC. calidiroseagenome is highly conserved across all isolation sites. Furthermore, genomic sequence differences only partially paralleled geographic distance, suggesting thatC. calidiroseagenotypes are not primarily determined by adaptive evolution. Instead, the presence ofC. calidiroseamay be driven by stochastic dispersal and localized extinction. This ecological mechanism may apply to many other low-abundance taxa.


2018 ◽  
Author(s):  
Natalie E. Wigger ◽  
◽  
James E. Faulds ◽  
Samuel J. Hampton ◽  
Josh W. Borella ◽  
...  

2014 ◽  
Vol 2 (1) ◽  
Author(s):  
Paul A Siratovich ◽  
Michael J Heap ◽  
Marlène C Villenueve ◽  
James W Cole ◽  
Thierry Reuschlé

1993 ◽  
Vol 333 ◽  
Author(s):  
William E. Glassley ◽  
Carol J. Bruton ◽  
William L. Bourcier

ABSTRACTThermally induced flow of liquid water and water vapor at the potential repository site at Yucca Mountain, Nevada, will extend hundreds of meters away from the repository edge. The resultant transfer of heat and mass will sufficiently perturb the ambient conditions such that a variety of mineralogical and chemical reactions will occur that may modify hydrological properties. The consequences of this “coupling” of geochemical and hydrological processes will vary through time, and will occur to different degrees in four regimes (T < Tboiling; T = Tboiling; T > T boiling; cooling) that will develop within the repository block. The dominant processes in the regimes differ, and reflect the local balance between: 1) kinetics and equilibrium; 2) dissolution and precipitation; 3) evaporation and boiling; and 4) fluid flow in matrix and fractures. Simulations were conducted of the evolution of these regimes, using laboratory derived kinetics and thermodynamic data, and site specific mineralogical and hydrological properties. These simulations identify regions where chemical and mineralogical equilibrium is likely to be achieved, and where net changes in hydrological properties will be concentrated. Tests of the results of these simulations have been initiated using field data from the Taupo Volcanic Zone, New Zealand. A preliminary series of calculations suggest that relative changes in porosity of as much as ± 20% to 30% may be possible for rocks with an initial porosity of 10%.


Sign in / Sign up

Export Citation Format

Share Document