Strike-slip deformation in the Confidence Hills, southern Death Valley fault zone, eastern California, USA

1996 ◽  
Vol 153 (3) ◽  
pp. 375-387 ◽  
Author(s):  
TIM P. DOOLEY ◽  
KEN R. McCLAY
2020 ◽  
Vol 132 (11-12) ◽  
pp. 2572-2586 ◽  
Author(s):  
Lei Huang ◽  
Chi-yang Liu ◽  
Jun-feng Zhao ◽  
Dong-dong Zhang

Abstract In rift basins with superposed strike-slip deformation, the structural style of wrench elements and the roles they play in synrift architecture and evolution are important, poorly understood issues for basin analysis and hydrocarbon exploration. The NE-SW–striking Tan-Lu fault zone, located in eastern China, runs through the Liaodong Bay subbasin within the Cenozoic Bohai Bay Basin and experienced dextral strike-slip motion during the later synrift stage of the basin (ca. 40 Ma to 23 Ma). Investigations of the Liaodong Bay subbasin indicate that rift-fault reactivation and wrench-fault development during strike-slip reactivation were strongly controlled by the distribution and geometry of preexisting rift faults, and local synrift basin inversion, induced by strike-slip reactivation of a preexisting graben during a later synrift stage, was a significant manifestation of synchronous strike-slip motion modifying synrift architecture and evolution. Moreover, synrift basin inversion within the Liaodong Bay subbasin manifested in two ways. First, stronger inversion occurred along the restraining bends of preexisting extensional faults. This induced uplift of the footwalls of graben-controlling faults, leading to deformation characterized by abundant shortcut thrusts and folds. The Liaodong uplift formed via this mechanism, triggered by strike-slip movement along the Tan-Lu fault zone at ca. 40 Ma. Second, weaker inversion induced by newly formed, subvertical, strike-slip faults occurred near the central part of the graben, with the characteristics of positive flower structures. Although inversion was limited to a very local area along a narrow fault zone, it substantially modified the basin’s physiography. In this rift system, coincident with local inversion-induced uplift, large-scale, rift-related subsidence occurred beyond the inversion belt within the flanking graben, leading to complexity and variety in intrabasinal structural deformation and filling, and exerting a complex influence on hydrocarbon prospects. This model of synrift basin inversion has profound implications for the interpretation of inversion structures and basin dynamics in any rift basin with superposed strike-slip deformation.


Author(s):  
Paul Leon Göllner ◽  
Jan Oliver Eisermann ◽  
Catalina Balbis ◽  
Ivan A. Petrinovic ◽  
Ulrich Riller

AbstractThe Southern Andes are often viewed as a classic example for kinematic partitioning of oblique plate convergence into components of continental margin-parallel strike-slip and transverse shortening. In this regard, the Liquiñe-Ofqui Fault Zone, one of Earth’s most prominent intra-arc deformation zones, is believed to be the most important crustal discontinuity in the Southern Andes taking up margin-parallel dextral strike-slip. Recent structural studies, however, are at odds with this simple concept of kinematic partitioning, due to the presence of margin-oblique and a number of other margin-parallel intra-arc deformation zones. However, knowledge on the extent of such zones in the Southern Andes is still limited. Here, we document traces of prominent structural discontinuities (lineaments) from the Southern Andes between 39° S and 46° S. In combination with compiled low-temperature thermochronology data and interpolation of respective exhumation rates, we revisit the issue of kinematic partitioning in the Southern Andes. Exhumation rates are maximal in the central parts of the orogen and discontinuity traces, trending predominantly N–S, WNW–ESE and NE–SW, are distributed across the entire width of the orogen. Notably, discontinuities coincide spatially with large gradients in Neogene exhumation rates and separate crustal domains characterized by uniform exhumation. Collectively, these relationships point to significant components of vertical displacement on these discontinuities, in addition to horizontal displacements known from published structural studies. Our results agree with previously documented Neogene shortening in the Southern Andes and indicate orogen-scale transpression with maximal vertical extrusion of rocks in the center of the transpression zone. The lineament and thermochronology data call into question the traditional view of kinematic partitioning in the Southern Andes, in which deformation is focused on the Liquiñe-Ofqui Fault Zone.


2005 ◽  
Vol 27 (8) ◽  
pp. 1379-1398 ◽  
Author(s):  
Guang Zhu ◽  
Yongsheng Wang ◽  
Guosheng Liu ◽  
Manlan Niu ◽  
Chenglong Xie ◽  
...  

1981 ◽  
Vol 18 (4) ◽  
pp. 776-788 ◽  
Author(s):  
R. D. Hyndman ◽  
R. M. Ellis

A temporary array of land and ocean bottom seismograph stations was used to accurately locate microearthquakes on the Queen Charlotte fault zone, which occurs along the continental margin of western Canada. The continental slope has two steep linear sections separated by a 25 km wide irregular terrace at a depth of 2 km. Eleven events were located with magnitudes from 0.5 to 2.0, 10 of them beneath the landward one of the two steep slopes, some 5 km off the coast of the southern Queen Charlotte Islands. No events were located beneath the seaward and deeper steep slope. The depths of seven of these events were constrained by the data to between 9 and 21 km with most near 20 km. The earthquake and other geophysical data are consistent with a near vertical fault zone having mainly strike-slip motion. A model including a small component of underthrusting in addition to strike-slip faulting is suggested to account for the some 15° difference between the relative motion of the North America and Pacific plates from plate tectonic models and the strike of the margin. One event was located about 50 km inland of the main active zone and probably occurred on the Sandspit fault. The rate of seismicity on the Queen Charlotte fault zone during the period of the survey was similar to that predicted by the recurrence relation for the region from the long-term earthquake record.


Sign in / Sign up

Export Citation Format

Share Document