History of hydrocarbon exploration in the Moray Firth

1996 ◽  
Vol 114 (1) ◽  
pp. 47-80 ◽  
Author(s):  
M. J. David
2011 ◽  
Vol 48 (6) ◽  
pp. 870-896 ◽  
Author(s):  
Janet Riddell

The south-central Intermontane belt of British Columbia has a complex architecture comprising late Paleozoic to Mesozoic volcanic and plutonic arc magmatic suites, marine and nonmarine clastic basins, high-grade metamorphic complexes, and accretionary rocks. Jurassic and Cretaceous clastic basins within this framework contain stratigraphy with hydrocarbon potential. The geology is complicated by Cretaceous to Eocene deformation, dismemberment, and dislocation. The Eocene to Neogene history of the southern Intermontane belt is dominated by non-arc volcanism, followed by Pleistocene to Recent glaciation. The volcanic and glacial cover makes this a difficult region to explore for resources. Much recent work has involved re-evaluating the challenges that the overlying volcanic cover has historically presented to geophysical imaging of the sedimentary rocks in this region in light of technological advances in geophysical data collection and analysis. This paper summarizes the lithological and stratigraphic framework of the region, with emphasis on description of the sedimentary units that have been the targets of hydrocarbon exploration.


2018 ◽  
Vol 465 (1) ◽  
pp. 119-136 ◽  
Author(s):  
M. Q. Haarhoff ◽  
F. Hughes ◽  
M. Heath-Clarke ◽  
D. Harrison ◽  
C. Taylor ◽  
...  

Clay Minerals ◽  
1990 ◽  
Vol 25 (4) ◽  
pp. 519-541 ◽  
Author(s):  
M. J. Pearson

AbstractClay mineral abundances in Mesozoic and Tertiary argillaceous strata from 15 exploration wells in the Inner and Outer Moray Firth, Viking Graben and East Shetland Basins of the northern North Sea have been determined in <0·2 µm fractions of cuttings samples. The clay assemblages of more deeply-buried samples cannot be unambiguously related to sedimentary input because of the diagenetic overprint which may account for much of the chlorite and related interstratified minerals. Other sediments, discussed on a regional basis and related to the geological history of the basins, are interpreted in terms of clay mineral provenance and control by climate, tectonic and volcanic activity. The distribution of illite-smectite can often be related to volcanic activity both in the Forties area during the M. Jurassic, and on the NE Atlantic continental margin during the U. Cretaceous-Early Tertiary which affected the North Sea more widely and left a prominent record in the Viking Graben and East Shetland Basin. Kaolinite associated with lignite-bearing sediments in the Outer Moray Firth Basin was probably derived by alteration of volcanic material in lagoonal or deltaic environments. Some U. Jurassic and L. Cretaceous sediments of the Inner Moray Basin are rich in illite-smectite, the origin of which is not clear.


1982 ◽  
Vol 8 ◽  
pp. 9-26
Author(s):  
Claus Andersen ◽  
Jens Christian Olsen ◽  
Olaf Michelsen ◽  
Erik Nygaard

The Central Graben is a broad, complex trough with a long history of differential subsidence. It was probably initiated in the Permian and was controlled by major rifting during the Mesozoic. To the south in the Dutch sector the trough is divided into two parts. From here it passes northwards and divides the southern North Sea Basin into the Anglo-Dutch Basin and the Northwest German Basin. It also separates the Mid North Sea High from the Ringkøbing-Fyn High. These highs form broad, east-west trending, relative stable ridges. The further continuation of the Central Graben is to the northwest, towards the centre of the North Sea, where it passes into the Viking Graben and the Moray Firth Basin at about 58° N. Where the Central Graben divides the two major highs, there is an elongate central narrow horst, the Dogger High, which is the southernmost of a row of mid-Graben highs. Both sides of the Graben are clearly defined by normal rotational faults that were intermittently active from Triassic to Early Cretaceous times.


2021 ◽  
pp. petgeo2021-018
Author(s):  
Fabio Lottaroli ◽  
Lorenzo Meciani

The exploration history of the large East Mediterranean Basin, which encompasses the Nile delta, Levantine, Herodotus and Eratosthenes provinces, has seen several phases of rejuvenation since exploration started in the 1950s, with new plays opened repeatedly after the basin was considered mature by the industry. The 584 exploration wells drilled to date have discovered more than 23 Bboe recoverable reserves/resources, mostly gas. The first discovery was the Abu Madi Field, in 1967, which opened the Messinian clastic play. Over time, other plays and sub plays were opened, including the Serravallian-Tortonian, the Plio-Pleistocene, the Oligo/Miocene in the Levantine, the intra Oligocene and the Cretaceous carbonates (Zohr discovery, 2015). The exceptional variety of plays, with different trapping styles, reservoir and seal facies patterns has few equivalents worldwide and makes the region a valuable training ground for explorers. The geological variety is not the only reason for such a complex and episodic exploration history: commercial (gas market) and geopolitical issues have also had an impact on the activity in parts of the basin. The largest discoveries have been made in the last 10 years (Tamar, Leviathan, Zohr) and, despite the intense exploration activity, parts of the basin remain underexplored. The company with the longest and most successful play opening history in the basin is Eni. Today, most major oil companies are active in the basin, which even after 70 years is still considered one of the world's exploration hotspots. 


1990 ◽  
Vol 147 (1) ◽  
pp. 87-103 ◽  
Author(s):  
A. M. ROBERTS ◽  
M. E. BADLEY ◽  
J. D. PRICE ◽  
I. W. HUCK

Energy ◽  
1985 ◽  
Vol 10 (3-4) ◽  
pp. 457-473
Author(s):  
Nordin Ramli

Sign in / Sign up

Export Citation Format

Share Document