Geophysical and mineralogical impacts of fluid injection in a geothermal system: the Hot Fractured Rock site at Soultz-sous-Forêts, France

2004 ◽  
Vol 236 (1) ◽  
pp. 355-367 ◽  
Author(s):  
A. Baldeyrou-Bailly ◽  
F. Surma ◽  
B. Fritz
Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-23 ◽  
Author(s):  
Rob Westaway ◽  
Neil M. Burnside

The November 2017 MW 5.5 Pohang earthquake is one of the largest and most damaging seismic events to have occurred in the Korean peninsula over the last century. Its close proximity to an Enhanced Geothermal System (EGS) site, where hydraulic injection into granite had taken place over the previous two years, has raised the possibility that it was anthropogenic; if so, it was by far the largest earthquake caused by any EGS project worldwide. However, a potential argument that this earthquake was independent of anthropogenic activity considers the delay of two or three months before its occurrence, following the most recent injection into each of the wells. A better understanding of the physical and chemical processes that occur following fluid injection into granite is thus warranted. We show that hydrochemical changes occurring while surface water, injected into granite, reequilibrates chemically with its subsurface environment, can account for time delays for earthquake occurrence of such duration, provided the seismogenic fault was already critically stressed, or very close to the condition for slip. This candidate causal mechanism counters the potential argument that the time delay militates against an anthropogenic cause of the Pohang earthquake and can account for its relatively large magnitude as a consequence of a relatively small-volume injection. The resulting analysis places bounds on combinations of physical and chemical properties of rocks, injected volume, and potential postinjection time delays for significant anthropogenic seismicity during future EGS projects in granite.


Geosciences ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 440 ◽  
Author(s):  
Jérôme de La Bernardie ◽  
Olivier Bour ◽  
Nicolas Guihéneuf ◽  
Eliot Chatton ◽  
Laurent Longuevergne ◽  
...  

Experimental characterization of thermal transport in fractured media through thermal tracer tests is crucial for environmental and industrial applications such as the prediction of geothermal system efficiency. However, such experiments have been poorly achieved in fractured rock due to the low permeability and complexity of these media. We have thus little knowledge about the effect of flow configuration on thermal recovery during thermal tracer tests in such systems. We present here the experimental set up and results of several single-well thermal tracer tests for different flow configurations, from fully convergent to perfect dipole, achieved in a fractured crystalline rock aquifer at the experimental site of Plœmeur (H+ observatory network). The monitoring of temperature using Fiber-Optic Distributed Temperature Sensing (FO-DTS) associated with appropriate data processing allowed to properly highlight the heat inflow in the borehole and to estimate temperature breakthroughs for the different tests. Results show that thermal recovery is mainly controlled by advection processes in convergent flow configuration while in perfect dipole flow field, thermal exchanges with the rock matrix are more important, inducing lower thermal recovery.


2020 ◽  
Author(s):  
Brice Lecampion ◽  
Federico Ciardo ◽  
Alexis Saèz Uribe ◽  
Andreas Möri

<p>We investigate via numerical modeling the growth of an aseismic rupture and the possible nucleation of a dynamic rupture driven by fluid injection into a fractured rock mass. We restrict to the case of highly transmissive fractures compared to the rock matrix at the scale of the injection duration and thus assume an impermeable matrix. We present a new 2D hydro-mechanical solver allowing to treat a large number of pre-existing frictional discontinuities. The quasi-static (or quasi-dynamic) balance of momentum is discretized using boundary elements while fluid flow inside the fracture is discretized via finite volume. A fully implicit scheme is used for time integration. Combining a hierarchical matrix approximation of the original boundary element matrix with a specifically developed block pre-conditioner enable a robust and efficient solution of large problems (with up to 10<sup>6</sup> unknowns). In order to treat accurately fractures intersections, we use piece-wise linear displacement discontinuities element for elasticity and a vertex centered finite volume method for flow.</p><p>We first consider the case of a randomly oriented discrete fracture network (DFN) having friction neutral properties. We discuss the very different behavior associated with marginally pressurized versus critically stressed conditions. As an extension of the case of a planar fault (Bhattacharya and Viesca, Science, 2019), the injection into a DFN problem is governed by the distribution (directly associated with fracture orientation) of a dimensionless parameter combining the local stress criticality (function of the in-situ principal effective stress, friction coefficient and local fracture orientation) and the normalized injection over-pressure. The percolation threshold of the DFN which characterizes the hydraulic connectivity of the network plays an additional role in fluid driven shear cracks growth. Our numerical simulations show that a critically stressed DFN exhibits fast aseismic slip growth (much faster than the fluid pore-pressure disturbance front propagation) regardless of the DFN percolation threshold. This is because the slipping patch growth is driven by the cascades of shear activation due to stress interactions as fractures get activated. On the other hand, the scenario is different for marginally pressurized / weakly critically stressed DFN. The aseismic slip propagation is then tracking pore pressure diffusion inside the DFN. As a result, the DFN percolation threshold plays an important role with low percolation leading to fluid localization and thus restricted aseismic rupture growth.</p><p>We then discuss the case of fluid injection into a fault damage zone. Using a linear frictional weakening model for the fault, we investigate the scenario of the nucleation of a dynamic rupture occurring after the end of the injection (as observed in several instances in the field). We delimit the injection and in-situ conditions supporting such a possibility.</p>


2020 ◽  
Vol 110 (5) ◽  
pp. 2328-2349
Author(s):  
Kadek Hendrawan Palgunadi ◽  
Alice-Agnes Gabriel ◽  
Thomas Ulrich ◽  
José Ángel López-Comino ◽  
Paul Martin Mai

ABSTRACT The 15 November 2017 Mw 5.5 Pohang, South Korea, earthquake has been linked to hydraulic stimulation and fluid injections, making it the largest induced seismic event associated with an enhanced geothermal system. To understand its source dynamics and fault interactions, we conduct the first 3D high-resolution spontaneous dynamic rupture simulations of an induced earthquake. We account for topography, off-fault plastic deformation under depth-dependent bulk cohesion, rapid velocity weakening friction, and 1D subsurface structure. A guided fault reconstruction approach that clusters spatiotemporal aftershock locations (including their uncertainties) is used to identify a main and a secondary fault plane that intersect under a shallow angle of 15°. Based on simple Mohr–Coulomb failure analysis and 180 dynamic rupture experiments in which we vary local stress loading conditions, fluid pressure, and relative fault strength, we identify a preferred two-fault-plane scenario that well reproduces observations. We find that the regional far-field tectonic stress regime promotes pure strike-slip faulting, whereas local stress conditions constrained by borehole logging generate the observed thrust-faulting component. Our preferred model is characterized by overpressurized pore fluids, nonoptimally oriented but dynamically weak faults and a close-to-critical local stress state. In our model, earthquake rupture “jumps” to the secondary fault by dynamic triggering, generating a measurable non-double-couple component. Our simulations suggest that complex dynamic fault interaction may occur during fluid-injection-induced earthquakes and that local stress perturbations dominate over regional stress conditions. Therefore, our findings have important implications for seismic hazard in active georeservoir.


2017 ◽  
Vol 98 ◽  
pp. 90-106 ◽  
Author(s):  
Deborah Di Naccio ◽  
Maurizio Vassallo ◽  
Giuseppe Di Giulio ◽  
Sara Amoroso ◽  
Luciana Cantore ◽  
...  

2020 ◽  
Author(s):  
Márk Somogyvári ◽  
Mohammadreza Jalali

<p>Hydraulic stimulation using high-pressure fluid injection has become the common technique for rock mass treatment in various industrial applications such oil & gas, mining and enhanced geothermal system (EGS) development. Hydraulic stimulation is associated with creation of new fractures or dilation of existing fractures that could alter the flow regime in the stimulated reservoir. In this context, it would be beneficiary to understand the dynamic response of the discrete fracture network (DFN) to the stimulation activities rather than comparison between the changes in injectivity and/or transmissivity.</p><p>In this work, a 2-D fully coupled hydro-mechanical model is developed to simulate the dynamic response of a fractured reservoir to hydraulic stimulation. The model calculates stresses, fracture fluid pressure and flow inside the fractures, and modifies the physical properties of the individual fractures given these values. All these alterations will be calculated and applied after each simulation timestep. The results of this synthetic modelling will be used to test the time-lapse pressure tomography approach.</p><p>Pressure tomography will be simulated at multiple timesteps, to capture the hydraulically active fractures within the system. The used tomographic interpretation will be based on the transdimensional DFN inversion, where model parametrization could change over time. With this methodology we can model the newly opened fractures by the stimulation.</p><p>The time-lapse inversion will use the result of the previous timestep as the initial solution for improved efficiency. We test the proposed methodology on outcrop based synthetic 2-D DFN models. The results could capture the changes of permeability (i.e. aperture) as a direct response to hydraulic stimulation.</p>


Sign in / Sign up

Export Citation Format

Share Document