Enhancing interactive particle visualization with advanced shading models

Author(s):  
Christiaan P. Gribble ◽  
Steven G. Parker
2017 ◽  
Vol 820 ◽  
pp. 263-283 ◽  
Author(s):  
Igor V. Naumov ◽  
Irina Yu. Podolskaya

The topology of vortex breakdown in the confined flow generated by a rotating lid in a closed container with a polygonal cross-section geometry has been analysed experimentally and numerically for different height/radius aspect ratios $h$ from 0.5 to 3.0. The locations of stagnation points of the breakdown bubble emergence and corresponding Reynolds numbers were determined experimentally and numerically by STAR-CCM+ computational fluid dynamics software for square, pentagonal, hexagonal and octagonal cross-section configurations. The flow pattern and velocity were observed and measured by combining seeding particle visualization and laser Doppler anemometry. The vortex breakdown size and position on the container axis were identified for Reynolds numbers ranging from 500 to 2800 in steady flow conditions. The obtained results were compared with the flow structure in the closed cylindrical container. The results allowed revealing regularities of formation of the vortex breakdown bubble depending on $Re$ and $h$ and the cross-section geometry of the confined container. It was found in a diagram of $Re$ versus $h$ that reducing the number of cross-section angles from eight to four shifts the breakdown bubble location to higher Reynolds numbers and a smaller aspect ratio. The vortex breakdown bubble area for octagonal cross-section was detected to correspond to the one for the cylindrical container but these areas for square and cylindrical containers do not overlap in the entire range of aspect ratio.


2005 ◽  
Vol 217 (1) ◽  
pp. 83-92 ◽  
Author(s):  
H. WANG ◽  
I. WU ◽  
Q. YANG ◽  
C. E. CATALANO ◽  
P. SERWER

2010 ◽  
Vol 2010.6 (0) ◽  
pp. 15-16
Author(s):  
Yuriko TAKESHIMA ◽  
Takashi TOKUMASU ◽  
Issei FUJISHIRO

Author(s):  
Jose M. Luna ◽  
Ricardo Romero-Mendez ◽  
Abel Hernandez-Guerrero ◽  
Jose C. Rubio-Arana

The flow structures in the cavities of parallel cross-corrugated surfaces, also called chevron geometry, are investigated in this work using an experimental visualization method. An angle of 45° between the corrugations and the main flow direction has been considered. Reviews show that a considerable amount of investigations, mainly experimental, of heat transfer and pressure drop for cross-corrugated plates has been performed, whereas for the flow field in the cavities has only been investigated numerically. The flow visualization experiments are performed inside a water tunnel using a wide range of the hydraulic diameter-based Reynolds number.


2020 ◽  
Author(s):  
Seong Ik Cheon ◽  
Leonardo Batista Capaverde Silva ◽  
Aditya Khair ◽  
Lauren Zarzar

We have demonstrated that adsorption of silica nanoparticles at the interface of a solubilizing oil droplet in surfactant solution can significantly accelerate the droplets’ self-propulsion speed. Using fluorescent particle visualization, we correlated the degree of particle surface coverage on bromodecane droplets to the droplet speed in TX surfactant. Slowest speeds were found at the lowest and highest surface coverages and the fastest speeds were achieved at intermediate surface coverages of about 40%. The particle-assisted propulsion acceleration was further demonstrated in nonionic, anionic, and cationic surfactants and a range of oils with varying solubilization rates. We propose that particles at the droplet interface hinder solubilization by displacing oil-water interfacial area, providing asymmetry in the distribution of oil-filled micelles along the droplet surface and accelerating Marangoni flow. We describe a fluid-mechanical model to rationalize the effect of the particles by considering the effect of a non-symmetrical distribution of solubilized oil at the droplet surface. Approaches by which to modulate the distribution of solubilization across droplet interfaces may provide a facile route to tuning active colloid speeds and dynamics. <br>


Author(s):  
Paolo Angelelli ◽  
Sten Roar Snare ◽  
Helwig Hauser ◽  
Siri Ann Nyrnes ◽  
Lasse Løvstakken ◽  
...  

2005 ◽  
Vol 12 (3) ◽  
pp. 418-425 ◽  
Author(s):  
Frank Y. H. Lin ◽  
Mahdi Sabri ◽  
Javad Alirezaie ◽  
Dongqing Li ◽  
Philip M. Sherman

ABSTRACT The light-scattering properties of submicroscopic metal particles ranging from 40 to 120 nm in diameter have recently been investigated. These particles scatter incident white light to generate monochromatic light, which can be seen either by the naked eye or by dark-field microscopy. The nanoparticles are well suited for detection in microchannel-based immunoassays. The goal of the present study was to detect Helicobacter pylori- and Escherichia coli O157:H7-specific antigens with biotinylated polyclonal antibodies. Gold particles (diameter, 80 nm) functionalized with a secondary antibiotin antibody were then used as the readout. A dark-field stereomicroscope was used for particle visualization in poly(dimethylsiloxane) microchannels. A colorimetric quantification scheme was developed for the detection of the visual color changes resulting from immune reactions in the microchannels. The microchannel immunoassays reliably detected H. pylori and E. coli O157:H7 antigens in quantities on the order of 10 ng, which provides a sensitivity of detection comparable to those of conventional dot blot assays. In addition, the nanoparticles within the microchannels can be stored for at least 8 months without a loss of signal intensity. This strategy provides a means for the detection of nanoparticles in microchannels without the use of sophisticated equipment. In addition, the approach has the potential for use for further miniaturization of immunoassays and can be used for long-term archiving of immunoassays.


Sign in / Sign up

Export Citation Format

Share Document