Computer simulation of rare event for M/M/1/N queuing system

Author(s):  
Dimitar Radev ◽  
Elena Rashkova
2014 ◽  
Vol 556-562 ◽  
pp. 3849-3851
Author(s):  
Rong Hua Tan

The optimization Problem of queuing system is an important research subject in the queuing system.There are two ways to solve this problem:one is the traditional theoretical analysis, the other is the application of computer simulation. This thesis introduces the queuing theory and the simulation technique of discrete event system, including fundamental conceptions, methods, performance index and classical model of queuing system, as well as the definition of simulation and the procedure of the simulation of discrete event system. And procedure and parameters set of general modeling methods are analyzed.


Author(s):  
David Morton ◽  
Bruce Letellier ◽  
Jeremy Tejada ◽  
David Johnson ◽  
Zahra Mohaghegh ◽  
...  

Output from a high-order simulation model with random inputs may be difficult to fully evaluate absent an understanding of sensitivity to the inputs. We describe, and apply, a sensitivity analysis procedure to a large-scale computer simulation model of the processes associated with Nuclear Regulatory Commission (NRC) Generic Safety Issue (GSI) 191. Our GSI-191 simulation model has a number of distinguishing features: (i) The model is large in scale in that it has a high-dimensional vector of inputs; (ii) some model inputs are governed by probability distributions; (iii) a key model output is the probability of system failure — a rare event; (iv) the model’s outputs require estimation by Monte Carlo sampling, including the use of variance reduction techniques; (v) it is computationally expensive to obtain precise estimates of the failure probability; (vi) we seek to propagate key uncertainties on model inputs to obtain distributional characteristics of the model’s outputs; and, (vii) the overall model involves a loose coupling between a physics-based stochastic simulation sub-model and a logic-based Probabilistic Risk Assessment (PRA) sub-model via multiple initiating events. Our proposal is guided by the need to have a practical approach to sensitivity analysis for a computer simulation model with these characteristics. We use common random numbers to reduce variability and smooth output analysis; we assess differences between two model configurations; and, we properly characterize both sampling error and the effect of uncertainties on input parameters. We show selected results of studies for sensitivities to parameters used in the South Texas Project Electric Generating Station (STP) GSI-191 risk-informed resolution project.


2014 ◽  
Vol 543-547 ◽  
pp. 1852-1855
Author(s):  
Li Ping Hu ◽  
Xiao Ji Chen ◽  
Lei Zuo

In order to reasonably organize production and to provide services, the use of computer simulation technology to research and analysis for a variety of discrete event system, the system can understand the dynamic operation rules to help people make decisions. This paper studies service completion event processing. First, research the queuing system based, according to the input process, queuing rules and service organizations, the establishment of a variety of models queuing system; then, research customer service time distribution, the mathematical model of exponential distribution and the use of a graphical representation of function curves; finally, research services completion event processing procedure through a flow chart describing the detailed design process, and the three main steps to achieve doing instructions. The research contents of this paper, to promote the application and development of computer simulation discipline is of great significance.


Author(s):  
Kiyomichi Nakai ◽  
Yusuke Isobe ◽  
Chiken Kinoshita ◽  
Kazutoshi Shinohara

Induced spinodal decomposition under electron irradiation in a Ni-Au alloy has been investigated with respect to its basic mechanism and confirmed to be caused by the relaxation of coherent strain associated with modulated structure. Modulation of white-dots on structure images of modulated structure due to high-resolution electron microscopy is reduced with irradiation. In this paper the atom arrangement of the modulated structure is confirmed with computer simulation on the structure images, and the relaxation of the coherent strain is concluded to be due to the reduction of phase-modulation.Structure images of three-dimensional modulated structure along <100> were taken with the JEM-4000EX high-resolution electron microscope at the HVEM Laboratory, Kyushu University. The transmitted beam and four 200 reflections with their satellites from the modulated structure in an fee Ni-30.0at%Au alloy under illumination of 400keV electrons were used for the structure images under a condition of the spherical aberration constant of the objective lens, Cs = 1mm, the divergence of the beam, α = 3 × 10-4 rad, underfocus, Δf ≃ -50nm and specimen thickness, t ≃ 15nm. The CIHRTEM code was used for the simulation of the structure image.


Sign in / Sign up

Export Citation Format

Share Document