scholarly journals Matrix product on heterogeneous master-worker platforms

Author(s):  
Jack Dongarra ◽  
Jean-François Pineau ◽  
Yves Robert ◽  
Frédéric Vivien
Keyword(s):  
2021 ◽  
Vol 5 (1) ◽  
pp. 8
Author(s):  
Cundi Han ◽  
Yiming Chen ◽  
Da-Yan Liu ◽  
Driss Boutat

This paper applies a numerical method of polynomial function approximation to the numerical analysis of variable fractional order viscoelastic rotating beam. First, the governing equation of the viscoelastic rotating beam is established based on the variable fractional model of the viscoelastic material. Second, shifted Bernstein polynomials and Legendre polynomials are used as basis functions to approximate the governing equation and the original equation is converted to matrix product form. Based on the configuration method, the matrix equation is further transformed into algebraic equations and numerical solutions of the governing equation are obtained directly in the time domain. Finally, the efficiency of the proposed algorithm is proved by analyzing the numerical solutions of the displacement of rotating beam under different loads.


2021 ◽  
Vol 103 (6) ◽  
Author(s):  
Luke Causer ◽  
Mari Carmen Bañuls ◽  
Juan P. Garrahan

Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 77
Author(s):  
Angus J. Dunnett ◽  
Alex W. Chin

Simulating the non-perturbative and non-Markovian dynamics of open quantum systems is a very challenging many body problem, due to the need to evolve both the system and its environments on an equal footing. Tensor network and matrix product states (MPS) have emerged as powerful tools for open system models, but the numerical resources required to treat finite-temperature environments grow extremely rapidly and limit their applications. In this study we use time-dependent variational evolution of MPS to explore the striking theory of Tamascelli et al. (Phys. Rev. Lett. 2019, 123, 090402.) that shows how finite-temperature open dynamics can be obtained from zero temperature, i.e., pure wave function, simulations. Using this approach, we produce a benchmark dataset for the dynamics of the Ohmic spin-boson model across a wide range of coupling strengths and temperatures, and also present a detailed analysis of the numerical costs of simulating non-equilibrium steady states, such as those emerging from the non-perturbative coupling of a qubit to baths at different temperatures. Despite ever-growing resource requirements, we find that converged non-perturbative results can be obtained, and we discuss a number of recent ideas and numerical techniques that should allow wide application of MPS to complex open quantum systems.


2020 ◽  
Vol 26 (4) ◽  
pp. 273-284
Author(s):  
Hao Ji ◽  
Michael Mascagni ◽  
Yaohang Li

AbstractIn this article, we consider the general problem of checking the correctness of matrix multiplication. Given three n\times n matrices 𝐴, 𝐵 and 𝐶, the goal is to verify that A\times B=C without carrying out the computationally costly operations of matrix multiplication and comparing the product A\times B with 𝐶, term by term. This is especially important when some or all of these matrices are very large, and when the computing environment is prone to soft errors. Here we extend Freivalds’ algorithm to a Gaussian Variant of Freivalds’ Algorithm (GVFA) by projecting the product A\times B as well as 𝐶 onto a Gaussian random vector and then comparing the resulting vectors. The computational complexity of GVFA is consistent with that of Freivalds’ algorithm, which is O(n^{2}). However, unlike Freivalds’ algorithm, whose probability of a false positive is 2^{-k}, where 𝑘 is the number of iterations, our theoretical analysis shows that, when A\times B\neq C, GVFA produces a false positive on set of inputs of measure zero with exact arithmetic. When we introduce round-off error and floating-point arithmetic into our analysis, we can show that the larger this error, the higher the probability that GVFA avoids false positives. Moreover, by iterating GVFA 𝑘 times, the probability of a false positive decreases as p^{k}, where 𝑝 is a very small value depending on the nature of the fault on the result matrix and the arithmetic system’s floating-point precision. Unlike deterministic algorithms, there do not exist any fault patterns that are completely undetectable with GVFA. Thus GVFA can be used to provide efficient fault tolerance in numerical linear algebra, and it can be efficiently implemented on modern computing architectures. In particular, GVFA can be very efficiently implemented on architectures with hardware support for fused multiply-add operations.


2021 ◽  
Vol 103 (12) ◽  
Author(s):  
Jintae Kim ◽  
Minsoo Kim ◽  
Pramod Padmanabhan ◽  
Jung Hoon Han ◽  
Hyun-Yong Lee

Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 984
Author(s):  
Regina Finsterhölzl ◽  
Manuel Katzer ◽  
Andreas Knorr ◽  
Alexander Carmele

This paper presents an efficient algorithm for the time evolution of open quantum many-body systems using matrix-product states (MPS) proposing a convenient structure of the MPS-architecture, which exploits the initial state of system and reservoir. By doing so, numerically expensive re-ordering protocols are circumvented. It is applicable to systems with a Markovian type of interaction, where only the present state of the reservoir needs to be taken into account. Its adaption to a non-Markovian type of interaction between the many-body system and the reservoir is demonstrated, where the information backflow from the reservoir needs to be included in the computation. Also, the derivation of the basis in the quantum stochastic Schrödinger picture is shown. As a paradigmatic model, the Heisenberg spin chain with nearest-neighbor interaction is used. It is demonstrated that the algorithm allows for the access of large systems sizes. As an example for a non-Markovian type of interaction, the generation of highly unusual steady states in the many-body system with coherent feedback control is demonstrated for a chain length of N=30.


SIAM Review ◽  
1967 ◽  
Vol 9 (2) ◽  
pp. 249-249 ◽  
Author(s):  
T. N. E. Greville

2003 ◽  
Vol 95 (1) ◽  
pp. 101-121 ◽  
Author(s):  
Delin Chu ◽  
Lieven De Lathauwer ◽  
Bart De Moor

Sign in / Sign up

Export Citation Format

Share Document