Universal closure operator for prolog

1986 ◽  
Vol 21 (6) ◽  
pp. 61-62
Author(s):  
T Vasak
2021 ◽  
Vol 31 (3) ◽  
pp. 155-164
Author(s):  
Sergey S. Marchenkov

Abstract On the set P k ∗ $\begin{array}{} \displaystyle P_k^* \end{array}$ of partial functions of the k-valued logic, we consider the implicative closure operator, which is the extension of the parametric closure operator via the logical implication. It is proved that, for any k ⩾ 2, the number of implicative closed classes in P k ∗ $\begin{array}{} \displaystyle P_k^* \end{array}$ is finite. For any k ⩾ 2, in P k ∗ $\begin{array}{} \displaystyle P_k^* \end{array}$ two series of implicative closed classes are defined. We show that these two series exhaust all implicative precomplete classes. We also identify all 8 atoms of the lattice of implicative closed classes in P 3 ∗ $\begin{array}{} \displaystyle P_3^* \end{array}$ .


2021 ◽  
Vol 179 (1) ◽  
pp. 59-74
Author(s):  
Josef Šlapal

In this paper, we propose new definitions of digital Jordan curves and digital Jordan surfaces. We start with introducing and studying closure operators on a given set that are associated with n-ary relations (n > 1 an integer) on this set. Discussed are in particular the closure operators associated with certain n-ary relations on the digital line ℤ. Of these relations, we focus on a ternary one equipping the digital plane ℤ2 and the digital space ℤ3 with the closure operator associated with the direct product of two and three, respectively, copies of this ternary relation. The connectedness provided by the closure operator is shown to be suitable for defining digital curves satisfying a digital Jordan curve theorem and digital surfaces satisfying a digital Jordan surface theorem.


2018 ◽  
Vol 106 (03) ◽  
pp. 342-360 ◽  
Author(s):  
G. CHIASELOTTI ◽  
T. GENTILE ◽  
F. INFUSINO

In this paper, we introduce asymmetry geometryfor all those mathematical structures which can be characterized by means of a generalization (which we call pairing) of a finite rectangular table. In more detail, let$\unicode[STIX]{x1D6FA}$be a given set. Apairing$\mathfrak{P}$on$\unicode[STIX]{x1D6FA}$is a triple$\mathfrak{P}:=(U,F,\unicode[STIX]{x1D6EC})$, where$U$and$\unicode[STIX]{x1D6EC}$are nonempty sets and$F:U\times \unicode[STIX]{x1D6FA}\rightarrow \unicode[STIX]{x1D6EC}$is a map having domain$U\times \unicode[STIX]{x1D6FA}$and codomain$\unicode[STIX]{x1D6EC}$. Through this notion, we introduce a local symmetry relation on$U$and a global symmetry relation on the power set${\mathcal{P}}(\unicode[STIX]{x1D6FA})$. Based on these two relations, we establish the basic properties of our symmetry geometry induced by$\mathfrak{P}$. The basic tool of our study is a closure operator$M_{\mathfrak{P}}$, by means of which (in the finite case) we can represent any closure operator. We relate the study of such a closure operator to several types of others set operators and set systems which refine the notion of an abstract simplicial complex.


1997 ◽  
Vol 4 (33) ◽  
Author(s):  
Anders Kock ◽  
Gonzalo E. Reyes

In the context of constructive locale or frame theory (locale<br />theory over a fixed base locale), we study some aspects of 'frame distributions', meaning sup preserving maps from a frame to the base frame. We derive a relationship between results of Jibladze-Johnstone and Bunge-Funk, and also descriptions in distribution terms, as well as in double negation terms, of the 'interior of closure' operator on open parts of a locale.


1979 ◽  
Vol 20 (3) ◽  
pp. 367-375 ◽  
Author(s):  
G.J. Logan

A closure algebra is a set X with a closure operator C defined on it. It is possible to construct a topology τ on MX, the family of maximal, proper, closed subsets of X, and then to examine the relationship between the algebraic structure of (X, C) and the topological structure of the dual space (MX τ) This paper describes the algebraic conditions which are necessary and sufficient for the dual space to be separable metric and metric respectively.


1962 ◽  
Vol 14 ◽  
pp. 451-460 ◽  
Author(s):  
David Sachs

It is well known (1, p. 162) that the lattice of subalgebras of a finite Boolean algebra is dually isomorphic to a finite partition lattice. In this paper we study the lattice of subalgebras of an arbitrary Boolean algebra. One of our main results is that the lattice of subalgebras characterizes the Boolean algebra. In order to prove this result we introduce some notions which enable us to give a characterization and representation of the lattices of subalgebras of a Boolean algebra in terms of a closure operator on the lattice of partitions of the Boolean space associated with the Boolean algebra. Our theory then has some analogy to that of the lattice theory of topological vector spaces. Of some interest is the problem of classification of Boolean algebras in terms of the properties of their lattice of subalgebras, and we obtain some results in this direction.


2020 ◽  
Vol 39 (5) ◽  
pp. 6869-6880
Author(s):  
S. H. Alsulami ◽  
Ismail Ibedou ◽  
S. E. Abbas

In this paper, we join the notion of fuzzy ideal to the notion of fuzzy approximation space to define the notion of fuzzy ideal approximation spaces. We introduce the fuzzy ideal approximation interior operator int Φ λ and the fuzzy ideal approximation closure operator cl Φ λ , and moreover, we define the fuzzy ideal approximation preinterior operator p int Φ λ and the fuzzy ideal approximation preclosure operator p cl Φ λ with respect to that fuzzy ideal defined on the fuzzy approximation space (X, R) associated with some fuzzy set λ ∈ IX. Also, we define fuzzy separation axioms, fuzzy connectedness and fuzzy compactness in fuzzy approximation spaces and in fuzzy ideal approximation spaces as well, and prove the implications in between.


1991 ◽  
Vol 14 (2) ◽  
pp. 309-314 ◽  
Author(s):  
M. N. Mukherjee ◽  
S. P. Sinha

The paper contains a study of fuzzyθ-closure operator,θ-closures of fuzzy sets in a fuzzy topological space are characterized and some of their properties along with their relation with fuzzyδ-closures are investigated. As applications of these concepts, certain functions as well as some spaces satisfying certain fuzzy separation axioms are characterized in terms of fuzzyθ-closures andδ-closures.


Sign in / Sign up

Export Citation Format

Share Document