Information management for high performance autonomous intelligent systems

Author(s):  
Scott Spetka ◽  
Scot Tucker ◽  
George Ramseyer ◽  
Richard Linderman
Machines ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 42 ◽  
Author(s):  
Zandra B. Rivera ◽  
Marco C. De Simone ◽  
Domenico Guida

The fusion of different technologies is the base of the fourth industrial revolution. Companies are encouraged to integrate new tools in their production processes in order to improve working conditions and increase productivity and production quality. The integration between information, communication technologies and industrial automation can create highly flexible production models for products and services that can be customized through real-time interactions between consumer, production and machinery throughout the production process. The future of production, therefore, depends on increasingly intelligent machinery through the use of digital systems. The key elements for future integrated devices are intelligent systems and machines, based on human–machine interaction and information sharing. To do so, the implementation of shared languages that allow different systems to dialogue in a simple way is necessary. In this perspective, the use of advanced prototyping tools like Open-Source programming systems, the development of more detailed multibody models through the use of CAD software and the use of self-learning techniques will allow for developing a new class of machines capable of revolutionizing our companies. The purpose of this paper is to present a waypoint navigation activity of a custom Wheeled Mobile Robot (WMR) in an available simulated 3D indoor environment by using the Gazebo simulator. Gazebo was developed in 2002 at the University of Southern California. The idea was to create a high-fidelity simulator that gave the possibility to simulate robots in outdoor environments under various conditions. In particular, we wanted to test the high-performance physics Open Dynamics Engine (ODE) and the sensors feature present in Gazebo for prototype development activities. This choice was made for the possibility of emulating not only the system under analysis, but also the world in which the robot will operate. Furthermore, the integration tools available with Solidworks and Matlab-Simulink, well known commercial platforms of modelling and robotics control respectively, are also explored.


2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Priyanka Dixit ◽  
Rashi Kohli ◽  
Angel Acevedo-Duque ◽  
Romel Ramon Gonzalez-Diaz ◽  
Rutvij H. Jhaveri

Now a day’s advancement in technology increases the use of automation, mobility, smart devices, and application over the Internet that can create serious problems for protection and the privacy of digital data and raised the global security issues. Therefore, the necessity of intelligent systems or techniques can prevent and protect the data over the network. Cyberattack is the most prominent problem of cybersecurity and now a challenging area of research for scientists and researchers. These attacks may destroy data, system, and resources and sometimes may damage the whole network. Previously numerous traditional techniques were used for the detection and mitigation of cyberattack, but the techniques are not efficient for new attacks. Today’s machine learning and metaheuristic techniques are popularly applied in different areas to achieve efficient computation and fast processing of complex data of the network. This paper is discussing the improvements and enhancement of security models, frameworks for the detection of cyberattacks, and prevention by using different machine learning and optimization techniques in the domain of cybersecurity. This paper is focused on the literature of different metaheuristic algorithms for optimal feature selection and machine learning techniques for the classification of attacks, and some of the prominent algorithms such as GA, evolutionary, PSO, machine learning, and others are discussed in detail. This study provides descriptions and tutorials that can be referred from various literature citations, references, or latest research papers. The techniques discussed are efficiently applied with high performance for detection, mitigation, and identification of cyberattacks and provide a security mechanism over the network. Hence, this survey presents the description of various existing intelligent techniques, attack datasets, different observations, and comparative studies in detail.


Author(s):  
Scot Tucker ◽  
Scott Spetka ◽  
George Ramseyer ◽  
Susan Emeny ◽  
Dennis Fitzgerald ◽  
...  

Author(s):  
YU.I. Nechaev

Рассматривается повышение эффективности функционирования мультиагентных систем при использовании программного комплекса физико-математического моделирования (ФММ). Функциональные элементы комплекса обеспечивают контроль экстремальных ситуаций на основе динамической модели современной теории катастроф (СТК), интегрирующей интеллектуальных технологии и высокопроизводительные вычисления. Особенности построения комплекса связаны с развитием новых подходов к физико-математическому моделированию динамики сложных систем в эволюционирующей среде. Вычислительная среда эволюционной динамики представлена как активная динамическая система (АДС) на основе совокупности взаимодействующих интеллектуальных агентов (ИА) в среде мультиагентного моделирования (Multiagent Modeling System MMS), обеспечивающей информационные и управляющие связи, реализующие модель коллективного интеллекта при взаимодействии ИА в режиме экстренных вычислений (Urgent Computing UC) 1 5. Модели контроля экстремальных ситуаций разрабатываются в рамках логического базиса нечеткой формальной системы (НФС). Приведены примеры реализации разработанной стратегии в бортовых интеллектуальных системах новых поколений.An increase in the efficiency of multi-agent systems is considered when using the software package for physical and mathematical modeling (FMM). The functional elements of the complex provide control of extreme situations on the basis of a dynamic model of modern catastrophe theory (MCT), integrating intelligent technologies and high-performance computing. Features of the complex construction are associated with the development of new approaches to the physical and mathematical modeling of the dynamics of complex systems in an evolving environment. The computing environment of evolutionary dynamics is presented as an active dynamic system (ADS) based on a set of interacting intelligent agents (IA) in a Multiagent Modeling System (MMS), which provides information and control communications that implement the collective intelligence model in the interaction of IA in urgent computing mode (Urgent Computing - UC). Models for controlling extreme situations are developed within the framework of the logical basis of the fuzzy formal system (FFS). Examples of the implementation of the developed strategy in the onboard intelligent systems of new generations are given.


Author(s):  
Yongju Lee ◽  
Hyunwoo Kim ◽  
Huijeong Kim ◽  
Taeyeong Huh ◽  
Sanghyuk Jung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document