2011 ◽  
Vol 12 (2) ◽  
pp. 307-329 ◽  
Author(s):  
Harald Störrle

Author(s):  
С.И. Рябухин

Процессные модели предметной области широко применяются при проектировании баз данных, а именно в ходе концептуального моделирования данных. Предлагается решение проблемы неоднозначности преобразования процессных доменных моделей типа SADT в концептуальные модели данных. Domain process models are widely used in database design, namely in conceptual data modeling. The solution of the problem of ambiguity of transformation of process domain models of the SADT type into conceptual data models is proposed.


2020 ◽  
Vol 9 (6) ◽  
pp. 3925-3931
Author(s):  
S. Sharma ◽  
D. Rattan ◽  
K. Singh

2020 ◽  
Vol 19 (4) ◽  
pp. 28-39 ◽  
Author(s):  
Andrew Walker ◽  
Tomas Cerny ◽  
Eungee Song

2021 ◽  
Vol 11 (14) ◽  
pp. 6613
Author(s):  
Young-Bin Jo ◽  
Jihyun Lee ◽  
Cheol-Jung Yoo

Appropriate reliance on code clones significantly reduces development costs and hastens the development process. Reckless cloning, in contrast, reduces code quality and ultimately adds costs and time. To avoid this scenario, many researchers have proposed methods for clone detection and refactoring. The developed techniques, however, are only reliably capable of detecting clones that are either entirely identical or that only use modified identifiers, and do not provide clone-type information. This paper proposes a two-pass clone classification technique that uses a tree-based convolution neural network (TBCNN) to detect multiple clone types, including clones that are not wholly identical or to which only small changes have been made, and automatically classify them by type. Our method was validated with BigCloneBench, a well-known and wildly used dataset of cloned code. Our experimental results validate that our technique detected clones with an average rate of 96% recall and precision, and classified clones with an average rate of 78% recall and precision.


2021 ◽  
pp. 1-22
Author(s):  
Lei Jinyu ◽  
Liu Lei ◽  
Chu Xiumin ◽  
He Wei ◽  
Liu Xinglong ◽  
...  

Abstract The ship safety domain plays a significant role in collision risk assessment. However, few studies take the practical considerations of implementing this method in the vicinity of bridge-waters into account. Therefore, historical automatic identification system data is utilised to construct and analyse ship domains considering ship–ship and ship–bridge collisions. A method for determining the closest boundary is proposed, and the boundary of the ship domain is fitted by the least squares method. The ship domains near bridge-waters are constructed as ellipse models, the characteristics of which are discussed. Novel fuzzy quaternion ship domain models are established respectively for inland ships and bridge piers, which would assist in the construction of a risk quantification model and the calculation of a grid ship collision index. A case study is carried out on the multi-bridge waterway of the Yangtze River in Wuhan, China. The results show that the size of the ship domain is highly correlated with the ship's speed and length, and analysis of collision risk can reflect the real situation near bridge-waters, which is helpful to demonstrate the application of the ship domain in quantifying the collision risk and to characterise the collision risk distribution near bridge-waters.


Sign in / Sign up

Export Citation Format

Share Document