Impact of routing protocols on the quality of transmission for video streaming

Author(s):  
Sedrati Maamar ◽  
Taleb hafnaoui
Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 621
Author(s):  
Maghsoud Morshedi ◽  
Josef Noll

Video on demand (VoD) services such as YouTube have generated considerable volumes of Internet traffic in homes and buildings in recent years. While Internet service providers deploy fiber and recent wireless technologies such as 802.11ax to support high bandwidth requirement, the best-effort nature of 802.11 networks and variable wireless medium conditions hinder users from experiencing maximum quality during video streaming. Hence, Internet service providers (ISPs) have an interest in monitoring the perceived quality of service (PQoS) in customer premises in order to avoid customer dissatisfaction and churn. Since existing approaches for estimating PQoS or quality of experience (QoE) requires external measurement of generic network performance parameters, this paper presents a novel approach to estimate the PQoS of video streaming using only 802.11 specific network performance parameters collected from wireless access points. This study produced datasets comprising 802.11n/ac/ax specific network performance parameters labelled with PQoS in the form of mean opinion scores (MOS) to train machine learning algorithms. As a result, we achieved as many as 93–99% classification accuracy in estimating PQoS by monitoring only 802.11 parameters on off-the-shelf Wi-Fi access points. Furthermore, the 802.11 parameters used in the machine learning model were analyzed to identify the cause of quality degradation detected on the Wi-Fi networks. Finally, ISPs can utilize the results of this study to provide predictable and measurable wireless quality by implementing non-intrusive monitoring of customers’ perceived quality. In addition, this approach reduces customers’ privacy concerns while reducing the operational cost of analytics for ISPs.


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 948
Author(s):  
Carlos Eduardo Maffini Santos ◽  
Carlos Alexandre Gouvea da Silva ◽  
Carlos Marcelo Pedroso

Quality of service (QoS) requirements for live streaming are most required for video-on-demand (VoD), where they are more sensitive to variations in delay, jitter, and packet loss. Dynamic Adaptive Streaming over HTTP (DASH) is the most popular technology for live streaming and VoD, where it has been massively deployed on the Internet. DASH is an over-the-top application using unmanaged networks to distribute content with the best possible quality. Widely, it uses large reception buffers in order to keep a seamless playback for VoD applications. However, the use of large buffers in live streaming services is not allowed because of the induced delay. Hence, network congestion caused by insufficient queues could decrease the user-perceived video quality. Active Queue Management (AQM) arises as an alternative to control the congestion in a router’s queue, pressing the TCP traffic sources to reduce their transmission rate when it detects incipient congestion. As a consequence, the DASH client tends to decrease the quality of the streamed video. In this article, we evaluate the performance of recent AQM strategies for real-time adaptive video streaming and propose a new AQM algorithm using Long Short-Term Memory (LSTM) neural networks to improve the user-perceived video quality. The LSTM forecast the trend of queue delay to allow earlier packet discard in order to avoid the network congestion. The results show that the proposed method outperforms the competing AQM algorithms, mainly in scenarios where there are congested networks.


IEEE Access ◽  
2017 ◽  
Vol 5 ◽  
pp. 1846-1871 ◽  
Author(s):  
Muhammad Asif ◽  
Shafiullah Khan ◽  
Rashid Ahmad ◽  
Muhammad Sohail ◽  
Dhananjay Singh

The feasibility and utility of long-distance communication via Earth-orbiting satellites has been demonstrated during recent years and it is appropriate therefore to focus attention on the more important scientific studies and technical developments that will be needed if full use is to be made of this valuable mode of communication in the future. The early communication satellites (the Telstar and Relay series) were pioneers in a relatively unknown propagation environment. The satellites themselves were conceptually simple and the communication equipment consisted essentially of a frequency-changing transponder with an r. f. power output of a few watts and a bandwidth some tens of megahertz. Carrier frequencies in the range 2 to 6 GHz were employed; typically either 2 or 6 GHz was used for transmission and 4 GHz for reception at the Earth station. To obtain an adequate signal/noise ratio at the output of the Earth station receiver, frequency modulation was employed, the frequency deviations being greater than those used on terrestrial microwave links. Launcher limitations and other factors meant that the satellites had to be placed in inclined elliptical orbits (see figure 1) with maximum heights of only a few thousand miles. Nevertheless, these satellites demonstrated that some hundreds of frequency-division multiplex telephony circuits, or a television channel, could be achieved with generally satisfactory quality of transmission. It is to be noted, however, that the satellite transponders accommodated only one, or at the most two, r. f. carriers at any time, and that the transmission performance was at times marginal due to limitations of the satellite effective radiated power. Furthermore, these relatively low orbit satellites provided communication in periods of generally less than an hour at a time and required continuous tracking by the Earth station aerials, due to movement of the satellites relative to the Earth.


Author(s):  
Edma V.C. Urtiga Mattos ◽  
Gustavo M. Torres ◽  
Mateus O. Da Silva ◽  
Victor L.G. Calvacante ◽  
Adriel V. Dos Santos ◽  
...  

Author(s):  
Konstantinos Christodoulopoulos ◽  
Ippokratis Sartzetakis ◽  
Polizois Soumplis ◽  
Emmanouel Varvarigos

Sign in / Sign up

Export Citation Format

Share Document