Color Adaptive Quantized Patterns for Presentation Attack Detection in Ocular Biometric Systems

Author(s):  
Kiran B. Raja ◽  
R. Raghavendra ◽  
Christoph Busch
Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1394
Author(s):  
Asad Ali ◽  
Sanaul Hoque ◽  
Farzin Deravi

Presentation attack artefacts can be used to subvert the operation of biometric systems by being presented to the sensors of such systems. In this work, we propose the use of visual stimuli with randomised trajectories to stimulate eye movements for the detection of such spoofing attacks. The presentation of a moving visual challenge is used to ensure that some pupillary motion is stimulated and then captured with a camera. Various types of challenge trajectories are explored on different planar geometries representing prospective devices where the challenge could be presented to users. To evaluate the system, photo, 2D mask and 3D mask attack artefacts were used and pupillary movement data were captured from 80 volunteers performing genuine and spoofing attempts. The results support the potential of the proposed features for the detection of biometric presentation attacks.


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 1089
Author(s):  
Soha B. Sandouka ◽  
Yakoub Bazi ◽  
Haikel Alhichri ◽  
Naif Alajlan

With the rapid growth of fingerprint-based biometric systems, it is essential to ensure the security and reliability of the deployed algorithms. Indeed, the security vulnerability of these systems has been widely recognized. Thus, it is critical to enhance the generalization ability of fingerprint presentation attack detection (PAD) cross-sensor and cross-material settings. In this work, we propose a novel solution for addressing the case of a single source domain (sensor) with large labeled real/fake fingerprint images and multiple target domains (sensors) with only few real images obtained from different sensors. Our aim is to build a model that leverages the limited sample issues in all target domains by transferring knowledge from the source domain. To this end, we train a unified generative adversarial network (UGAN) for multidomain conversion to learn several mappings between all domains. This allows us to generate additional synthetic images for the target domains from the source domain to reduce the distribution shift between fingerprint representations. Then, we train a scale compound network (EfficientNetV2) coupled with multiple head classifiers (one classifier for each domain) using the source domain and the translated images. The outputs of these classifiers are then aggregated using an additional fusion layer with learnable weights. In the experiments, we validate the proposed methodology on the public LivDet2015 dataset. The experimental results show that the proposed method improves the average classification accuracy over twelve classification scenarios from 67.80 to 80.44% after adaptation.


2021 ◽  
Author(s):  
Akhilesh Verma ◽  
Anshadha Gupta ◽  
Mohammad Akbar ◽  
Arun Kumar Yadav ◽  
Divakar Yadav

Abstract The fingerprint presentation attack is still a major challenge in biometric systems due to its increased applications worldwide. In the past, researchers used Fingerprint Presentation Attack Detection (FPAD) for user authentication, but it suffers from reliable authentication due to less focus on reducing the ‘error rate’. In this paper, we proposed an algorithm, based on referential image quality (RIQ)-metrics and minutiae count using neural network, k-NN and SVM for FPAD. We evaluate and validate the error rate reduction with different machine learning models on the public domain, such as LivDet crossmatch dataset2015 and achieved an accuracy of 88% with a neural network, 88.6% with k-NN and 88.8% using SVM. In addition, the average classification error (ACE) score is 0.1197 for ANN, 0.1138 for k-NN and 0.1117 for SVM. Thus, the results obtained show that it was achieved a reasonable accuracy with a low ACE score with respect to other state-of-the-art methods.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5686
Author(s):  
Jascha Kolberg ◽  
Daniel Gläsner ◽  
Ralph Breithaupt ◽  
Marta Gomez-Barrero ◽  
Jörg Reinhold ◽  
...  

Within the last few decades, the need for subject authentication has grown steadily, and biometric recognition technology has been established as a reliable alternative to passwords and tokens, offering automatic decisions. However, as unsupervised processes, biometric systems are vulnerable to presentation attacks targeting the capture devices, where presentation attack instruments (PAI) instead of bona fide characteristics are presented. Due to the capture devices being exposed to the public, any person could potentially execute such attacks. In this work, a fingerprint capture device based on thin film transistor (TFT) technology has been modified to additionally acquire the impedances of the presented fingers. Since the conductance of human skin differs from artificial PAIs, those impedance values were used to train a presentation attack detection (PAD) algorithm. Based on a dataset comprising 42 different PAI species, the results showed remarkable performance in detecting most attack presentations with an APCER = 2.89% in a user-friendly scenario specified by a BPCER = 0.2%. However, additional experiments utilising unknown attacks revealed a weakness towards particular PAI species.


Sign in / Sign up

Export Citation Format

Share Document